Skip to main content

Advertisement

Log in

A Novel Sensor Deployment Approach Using Multi-Objective Imperialist Competitive Algorithm in Wireless Sensor Networks

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A wireless sensor network is a set of spatially distributed sensor nodes that work together to cover a monitored area. Usually, a large number of sensor nodes are densely deployed because of the limited energy resources available to them. An efficient way to save energy in the system at any particular time is to activate the minimum number of sensors needed and put the remaining sensors in sleep mode. In this study, a novel multi-objective Imperialist Competitive Algorithm, called MOICA, is proposed for handling sensor deployment. The main goal is to minimize the number of active sensor nodes while achieving the maximum coverage. To illustrate the efficiency of the proposed algorithm, a set of experiments from previous studies are carried out. Numerical results indicate that with the same number of deployed sensors, MOICA can provide more accurate solutions in less computational time when compared to the existing methods, namely, coverage configuration protocol, optimal geographical density control, energy-efficient coverage control algorithm and improved geographical adaptive fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zoghi M.R., Kahaei M.H.: Sensor management under tracking accuracy and energy constraints in wireless sensor networks, Arab. J. Sci. Eng. 37(3), 721–734 (2012)

    Google Scholar 

  2. Ilyas, M.; Mahgoub, I.: Handbook of sensor networks: compact wireless and wired sensing systems. CRC Press, London (2005)

  3. Liao, W.H.; Kao, Y.; Li, Y.S.; A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Syst. Appl. 38(10), 12180–12188 (2011)

  4. Aitsaadi, N.; Achir, N.; Boussetta, K.: Guy Pujolle, artificial potential field approach in WSN deployment: cost, QoM, connectivity, and lifetime. Comput. Netw. 55(1), 84–105 (2011)

  5. Hosseinzadeh P.D., Schlegel C., MacGregor M.H.: Distributed optimal dynamic base station positioning in wireless sensor networks. Comput. Netw. 56(1), 34–49 (2012)

    Article  Google Scholar 

  6. Zhu, C.; Zheng, C.; Lei, S., Guangjie, H.: A survey on coverage and connectivity issues in wireless sensor networks, J. Netw. Comput. Appl. 35(2), 619–632 (2012). doi:10.1016/j.jnca.2011.11.016

  7. Shih, E.; Cho, S.; Ickes, N.; Min, R.; Sinha, A.; Wang, A.; Chandrakasan, A.: Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In: Basagni, S., Sivalingam, K. (eds.), Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, Rome, Italy, pp. 272–287 (2001)

  8. Zhang, H.; Hou, J.C.: Maintaining sensing coverage and connectivity in large sensor networks. In: Ad-hoc and sensor wireless networks, vol. 1, pp. 89–124 (2005)

  9. Wang, X.; Xing, G.; Zhang, Y.; Lu, C.; Pless, R.; Gill, C.: Integrated coverage and connectivity configuration in wireless sensor networks. In: Proceedings of the First international conference on Embedded networked sensor systems, Los Angeles, CA, USA, pp. 28–39 (2003)

  10. Xu, Y.; Heidemann, J.; Estrin, D.: Geography-informed energy conservation for ad hoc routing. In: Basagni, S., Sivalingam, K. (eds.), Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, Rome, Italy, pp. 70–84 (2001)

  11. Atashpaz-Gargari, E.; Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition.In: IEEE Congress on Evolutionary Computation (2007)

  12. Yousefi, M.; Yousefi, M.; Darus, A.N.: A modified imperialist competitive algorithm for constrained optimization of plate-fin heat exchangers. J. Power Energy 55(11–12), 1050–1059 (2012)

  13. Mohammadi-ivatloo, B.; Rabiee, A.; Soroudi, A.; Ehsan, M.: Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch Original Research Article Energy, 44(1), 228–240 (2012)

  14. Mozafari H., Abdi B., Ayob A.: Application of imperialist competitive algorithm for optimizing a thin resistant interphase Original, Res. Artic. Procedia Technol. 1, 187–193 (2012)

    Article  Google Scholar 

  15. Ray P., Varshney P.: Estimation of spatially distributed processes in wireless sensor networks with random packet loss, IEEE Trans. Wirel. Commun. 8(6), 3162–3171 (2009)

    Article  Google Scholar 

  16. Tsai, M.J.; Yang, H.Y.; Liu, B.H.; Huang, W.Q.: Virtual-coordinate-based delivery-guaranteed routing protocol in wireless sensor networks. IEEE/ACM Trans. Netw. 17(4), 1228–1241 (2009)

  17. Fapojuwo, A.O.; Cano-Tinoco, A.: Energy consumption and message delay analysis of qos enhanced base station controlled dynamic clustering protocol for wireless sensor networks. IEEE Trans. Wirel. Commun. 8(10), 5366–5374 (2009)

  18. Esnaashari M., Meybodi M.R.: A learning automata based scheduling solution to the dynamic point coverage problem in wireless sensor networks. Comput. Netw. 54(14), 2410–2438 (2010)

    Article  MATH  Google Scholar 

  19. Ye, F.; Zhong, G.; Cheng, J.; Lu, S.; Zhang, L.: PEAS: A robust energy conserving protocol for long-lived sensor networks. In: Proceedings of the 23rd International Conference on Distributed Computing Systems, ICDCS, Providence, USA, pp. 28–37 (2003)

  20. Cardei, M.; Thai, M.; Li, Y.; Wu, W.: Energy-efficient target coverage in wireless sensor networks. In: INFOCOM 2005. Proceedings of the IEEE 24th annual joint conference of the IEEE computer and communications societies, pp. 1976–84 (2005)

  21. Meguerdichian, S.; Potkonjak, M.: Low power 0/1 coverage and scheduling techniques in sensor networks, Tech. Rep. 030001, University of California at Los Angles (2003)

  22. Ye, F.; Zhong, G.; Lu, S.; Zhang, L.: Energy efficient robust sensing coverage in large sensor networks, Technical Report

  23. Sahoo, P.K.; Sheu, J.P.: Limited mobility coverage and connectivity maintenance protocols for wireless sensor networks. Comput. Netw. 55(13), 2856–2872 (2011)

  24. Jia, J.; Chen, J.; Chang, G.; Tan, Z.: Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Comput. Math. Appl. 57(11–12), 1756–1766 (2009)

  25. Coello Coello C.A., Pulido G.T., Lechuga M.S.: Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  26. Visalakshi S., Baskar S.: Multiobjective decentralized congestion management using modified NSGA-II. Arab. J. Sci. Eng. 36(5), 827–840 (2011)

    Article  Google Scholar 

  27. Ali, H.; Shahzad, W.; Aslam Khan, F.: Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle swarm optimization. Appl. Soft Comput. J. doi:10.1016/j.asoc.2011.05.036 (2011)

  28. Deb K., Pratap A., Agarwal S., Meyarivan T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  29. Nazari-Shirkouhi, S.; Eivazy, H.; Ghodsi, R.; Rezaie, K.; Atashpaz-Gargari, E.: Solving the integrated product mix-outsourcing problem using the Imperialist Competitive Algorithm. Expert Syst. Appl. 37(12), 7615–7626 (2010)

  30. Kaveh, A.; Talatahari, S.: Optimum design of skeletal structures using imperialist competitive algorithm. Comput. Struct.88(21–22), 1220–1229 (2010)

  31. Hakimi-Asiabar, M.; Ghodsypour, S.H.: Reza Kerachian, Multi-objective genetic local search algorithm using Kohonen’s neural map. Comput. Ind. Eng. 56, 1566–1576 (2009)

  32. Zhang, Y.; Gong, D.W.; Ding, Z.: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inform. Sci. doi:10.1016/j.ins.2011.06.004 (2011)

  33. Chantterjee, M.; DAS, S.K.; Turgut, D.: WCA: A weighted clustering algorithm for mobile ad hoc networks. Clust. Comput. 5(2), 193–204 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasul Enayatifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enayatifar, R., Yousefi, M., Abdullah, A.H. et al. A Novel Sensor Deployment Approach Using Multi-Objective Imperialist Competitive Algorithm in Wireless Sensor Networks. Arab J Sci Eng 39, 4637–4650 (2014). https://doi.org/10.1007/s13369-014-0969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-0969-y

Keywords

Navigation