Skip to main content
Log in

Characterization of polyethylene/silica nanocomposites using different rheological analyses

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Polyethylene (PE)/silica polymer nanocomposites (PNCs) were investigated mainly using rheological measurements. Various PEs [linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and low-density polyethylene (LDPE)] were selected as polymer matrices, and two comparable particulate silicas were utilized as favorable (hydrophobic, R202) or unfavorable (hydrophilic, A90) fillers. Small amplitude oscillatory shear (SAOS), large amplitude oscillatory shear (LAOS), elongational rheometry, tensile tests, and TEM were adopted to characterize PE/silica PNCs. LDPE/silica nanocomposites showed the best filler dispersion in TEM images but were the poorest in terms of rheological property enhancement. Linear viscoelasticity as determined by SAOS testing was discordant with their morphology. However, nonlinear viscoelasticity as determined by FT-rheology in LAOS testing adequately determined dispersion states. Elongational viscosity revealed LDPE/silica PNCs show strain-hardening behavior, which resulted in intense mixing conditions and best compatibilization on LDPE/silica PNCs. To quantify the strain-hardening effect, strain hardening coefficients (SHCs) were calculated for LDPE/silica PNCs and found to decrease with increasing silica concentration. In addition, tensile testing showed mechanical properties deteriorated with silica content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Booij, H.C., P. Leblans, J. Palmen, and G. Tiemersma-Thoone, 1983, Nonlinear viscoelasticity and the Cox-Merz relations for polymeric fluids, J. Polym. Sci. Pt. B-Polym. Phys. 21, 1703–1711.

    Article  CAS  Google Scholar 

  • Carotenuto, C., M. Grosso, and P.L. Maffettone, 2008, Fourier transform rheology of dilute immiscible polymer blends: A novel procedure to probe blend morphology, Macromolecules 41, 4492–4500.

    Article  CAS  Google Scholar 

  • Cho, K.S. and J.E. Bae, 2011, Geometric insights on viscoelasticity: Symmetry, scaling and superposition of viscoelastic functions, Korea-Aust. Rheol. J. 23, 49–58.

    Article  Google Scholar 

  • Cho, K.S., K. Hyun, K.H. Ahn, and S.J. Lee, 2005, A geometrical interpretation of large amplitude oscillatory shear response, J. Rheol. 49, 747–758.

    Article  CAS  Google Scholar 

  • Chopra, D., D. Vlassopoulos, and S.G. Hatzikiriakos, 2000, Nonlinear rheological response of phase separating polymer blends: Poly(styrene-co-maleic anhydride)/poly(methyl methacrylate), J. Rheol. 44, 27–45.

    Article  CAS  Google Scholar 

  • Cziep, M.A., M. Abbasi, M. Heck, L. Arens, and M. Wilhelm, 2016, Effect of molecular weight, polydispersity, and monomer of linear homopolymer melts on the intrinsic mechanical non-linearity 3Q0(ω) in MAOS, Macromolecules 49, 3566–3579.

    Article  CAS  Google Scholar 

  • Donnet, J.B., 1998, Black and white fillers and tire compound, Rubber Chem. Technol. 71, 323–341.

    Article  CAS  Google Scholar 

  • Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.

    Article  CAS  Google Scholar 

  • Ferri, D. and P. Lomellini, 1999, Melt rheology of randomly branched polystyrenes, J. Rheol. 43, 1355–1372.

    Article  CAS  Google Scholar 

  • Gadala-Maria, F. and A. Acrivos, 1980, Shear-induced structure in a concentrated suspension of solid spheres, J. Rheol. 24, 799–814.

    Article  CAS  Google Scholar 

  • Graham, M.D., 1995, Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows, J. Rheol. 39, 697–712.

    Article  CAS  Google Scholar 

  • Hassanabadi, H.M., M. Wilhelm, and D. Rodrigue, 2014, A rheological criterion to determine the percolation threshold in polymer nano-composites, Rheol. Acta 53, 869–882.

    Article  CAS  Google Scholar 

  • Hoyle, D.M., D. Auhl, O.G. Harlen, V.C. Barroso, M. Wilhelm, and T.C.B. McLeish, 2014, Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts, J. Rheol. 58, 969–997.

    Article  CAS  Google Scholar 

  • Hyun, K. and M. Wilhelm, 2009, Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems, Macromolecules 42, 411–422.

    Article  CAS  Google Scholar 

  • Hyun, K., H.T. Lim, and K.H. Ahn, 2012, Nonlinear response of polypropylene (PP)/clay nanocomposites under dynamic oscillatory shear flow, Korea-Aust. Rheol. J. 24, 113–120.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  CAS  Google Scholar 

  • Hyun, K., S.H. Kim, K.H. Ahn, and S.J. Lee, 2002, Large amplitude oscillatory shear as a way to classify the complex fluids, J. Non-Newton. Fluid Mech. 107, 51–65.

    Article  CAS  Google Scholar 

  • Katz, H.S. and J.V. Milewski, 1987, Handbook of Filler for Plastics, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Kempf, M., D. Ahirwal, M. Cziep, and M. Wilhelm, 2013, Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching, Macromolecules 46, 4978–4994.

    Article  CAS  Google Scholar 

  • Kim, M, H.Y. Song, W.J. Choi, and K. Hyun, 2019, Evaluation of the degree of dispersion of polymer nanocomposites (PNCs) using nonlinear rheological properties by FT-rheology, Macromolecules 52, 8604–8616.

    Article  CAS  Google Scholar 

  • Lee, S., M. Kim, H.Y. Song, and K. Hyun, 2019, Characterization of the effect of clay on morphological evaluations of PLA/biodegradable polymer blends by FT-rheology, Macromolecules 52, 7904–7919.

    Article  CAS  Google Scholar 

  • Lee, C.J., R. Salehiyan, D.S. Ham, S.K. Cho, S.J. Lee, K.J. Kim, T. Yoo, K. Hyun, J.H. Lee, and W.J. Choi, 2016, Influence of carbon nanotubes localization and transfer on electrical conductivity in PA66/(PS/PPE)/CNTs nanocomposites, Polymer 84, 198–208.

    Article  CAS  Google Scholar 

  • Lertwimolnun, W. and B. Vergnes, 2005, Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix, Polymer 46, 3462–3471.

    Article  CAS  Google Scholar 

  • Lim, H.T., K.H. Ahn, J.S. Hong, and K. Hyun, 2013, Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow, J. Rheol. 57, 767–789.

    Article  CAS  Google Scholar 

  • Lim, T., J.T. Uhl, and R.K. Prud’homme, 1984, Rheology of self-associating concentrated xanthan solutions, J. Rheol. 28, 367–379.

    Article  CAS  Google Scholar 

  • Mezger, T.G., 2014, The Rheology Handbook, 4th ed., Vincentz Network, Hanover.

    Google Scholar 

  • Nie, A., J. Lacayo-Pineda, N. Willenbacher, and M. Wilhelm, 2019a, Aging of natural rubber studied via Fourier-transform rheology and double quantum NMR to correlate local chain dynamics with macroscopic mechanical response, Polymer 181, 121804.

  • Nie, S., J. Lacayo-Pineda, and M. Wilhelm, 2019b, Fourier-transform rheology of unvulcanized styrene butadiene rubber filled with increasingly silanized silica, Soft Mater. 17, 269–282.

    Article  CAS  Google Scholar 

  • Ock, H.G., K.H. Ahn, S.J. Lee, and K. Hyun, 2016, Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology, Macromolecules 49, 2832–2842.

    Article  CAS  Google Scholar 

  • Okada, A., M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, and O. Kamigaito, 1990, Synthesis and properties of nylon-6/clay hybrids, In: Schaefer, D.W. and J.E. Mark, eds., Polymer Based Molecular Composites; MRS Symposium Proceedings, Vol. 171, Material Research Society, Pittsburgh, 45–50.

    Google Scholar 

  • Park, J.D. and S.A. Rogers, 2020, Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow, Phys. Fluids 32, 063102.

    Article  CAS  Google Scholar 

  • Payne, A.R., 1962, The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I, J. Appl. Polym. Sci. 6, 57–63.

    Article  CAS  Google Scholar 

  • Powell, J.A., 1995, Application of a nonlinear phenomenological model to the oscillatory behavior of ER materials, J. Rheol. 39, 1075–1094.

    Article  CAS  Google Scholar 

  • Ray, S.S. and M. Okamoto, 2003, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci. 28, 1539–1641.

    Article  CAS  Google Scholar 

  • Reinheimer, K., M. Grosso, and M. Wilhelm, 2011, Fourier transform rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions, J. Colloid Interface Sci. 360, 818–825.

    Article  CAS  Google Scholar 

  • Reinheimer, K., M. Grosso, F. Hetzel, J. Kübel, and M. Wilhelm, 2012, Fourier transform rheology as an innovative morphological characterization technique for the emulsion volume average radius and its distribution, J. Colloid Interface Sci. 380, 201–212.

    Article  CAS  Google Scholar 

  • Rogers, S.A., B.M. Erwin, D. Vlassopoulos, and M. Cloitre, 2011, A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid, J. Rheol. 55, 435–458.

    Article  CAS  Google Scholar 

  • Salehiyan, R. and K. Hyun, 2013, Effect of organoclay on nonlinear rheological properties of poly(lactic acid)/poly(caprolactone) blends, Korean J. Chem. Eng. 30, 1013–1022.

    Article  CAS  Google Scholar 

  • Salehiyan, R., Y. Yoo, W.J. Choi, and K. Hyun, 2014a, Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology, Macromolecules 47, 4066–4076.

    Article  CAS  Google Scholar 

  • Salehiyan, R., W.J. Choi, J.H. Lee, and K. Hyun, 2014b, Effects of mixing protocol and mixing time on viscoelasticity of compatibilized PP/PS blends, Korea-Aust. Rheol. J. 26, 311–318.

    Article  Google Scholar 

  • Salehiyan, R., H.Y. Song, W.J. Choi, and K. Hyun, 2015a, Characterization of effects of silica nanoparticles on (80/20) PP/PS blends via nonlinear rheological properties from Fourier transform rheology, Macromolecules 48, 4669–4679.

    Article  CAS  Google Scholar 

  • Salehiyan, R., H.Y. Song, and K. Hyun, 2015b, Nonlinear behavior of PP/PS blends with and without clay under large amplitude oscillatory shear (LAOS) flow, Korea-Aust. Rheol. J. 27, 95–103.

    Article  Google Scholar 

  • Salehiyan, R., H.Y. Song, M. Kim, W.J. Choi, and K. Hyun, 2016, Morphological evaluation of PP/PS blends filled with different types of clays by nonlinear rheological analysis, Macromolecules 49, 3148–3160.

    Article  CAS  Google Scholar 

  • Schlatter, G., G. Fleury, and R. Muller, 2005, Fourier transform rheology of branched polyethylene: Experiments and models for assessing the macromolecular architecture, Macromolecules 38, 6492–6503.

    Article  CAS  Google Scholar 

  • Schulken, R.M., R.H. Cox, and L.A. Minnick, 1980, Dynamic and steady-state rheological measurements on polymer melts, J. Appl. Polym. Sci. 25, 1341–1353.

    Article  CAS  Google Scholar 

  • Schwab, L., N. Hojdis, J. Lacayo, and M. Wilhelm, 2016, Fourier-transform rheology of unvulcanized, carbon black filled styrene butadiene rubber, Macromol. Mater. Eng. 301, 457–468.

    Article  CAS  Google Scholar 

  • Senses, E., Y. Jiao, and P. Akcora, 2014, Modulating interfacial attraction of polymer-grafted nanoparticles in melts under shear, Soft Matter 10, 4464–4470.

    Article  CAS  Google Scholar 

  • Solomon, M.J., A.S. Almusallam, K.F. Seefeldt, A. Somwangthanaroj, and P. Varadan, 2001, Rheology of polypropylene/clay hybrid materials, Macromolecules 34, 1864–1872.

    Article  CAS  Google Scholar 

  • Song, H.Y., O.S. Nnyigide, R. Salehiyan, and K. Hyun, 2016, Investigation of nonlinear rheological behavior of linear and 3-arm star 1,4-cis-polyisoprene (PI) under medium amplitude oscillatory shear (MAOS) flow via FT-rheology, Polymer 104, 268–278.

    Article  CAS  Google Scholar 

  • Song, H.Y., S.J. Park, and K. Hyun, 2017, Characterization of dilution effect of semidilute polymer solution on intrinsic non-linearity Q0 via FT rheology Macromolecules 50, 6238–6254.

    Article  CAS  Google Scholar 

  • Song, H.Y. and K. Hyun, 2018, Decomposition of Q0 from FT-rheology into elastic and viscous parts: Intrinsic-nonlinear master curves for polymer solutions, J. Rheol. 62, 919–939.

    Article  CAS  Google Scholar 

  • Song, H.Y. and K. Hyun, 2019a, First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS), Korea-Aust. Rheol. J. 31, 1–13.

    Article  Google Scholar 

  • Song, H.Y. and K. Hyun, 2019b, Nonlinear material functions under medium amplitude oscillatory shear (MAOS) flow, Korea-Aust. Rheol. J. 31, 267–284.

    Article  Google Scholar 

  • Song, H.Y., L. Faust, J. Son, M. Kim, S.J. Park, S.K. Ahn, M. Wilhelm, and K. Hyun, 2020, Small and medium amplitude oscillatory shear rheology of model branched polystyrene (PS) melts, Polymers 12, 365.

    Article  CAS  Google Scholar 

  • Stadler, F.J., J. Kaschta, H. Münstedt, F. Becker, and M. Buback, 2009, Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene, Rheol. Acta 48, 479–490.

    Article  CAS  Google Scholar 

  • Trouton, F.T. and E.S. Andrews, 1904, XLI. On the viscosity of pitch-like substances, Phil. Mag. 7, 347–355.

    Article  Google Scholar 

  • Vermant, J., S. Ceccia, M.K. Dolgovskij, P.L. Maffettone, and C.W. Macosko, 2007, Quantifying dispersion of layered nanocomposites via melt rheology, J. Rheol. 51, 429–450.

    Article  CAS  Google Scholar 

  • Wagner, M.H., V.H. Rolón-Garrido, K. Hyun, and M. Wilhelm, 2011, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers, J. Rheol. 55, 495–516.

    Article  CAS  Google Scholar 

  • Wilhelm, M., 2002, Fourier-transform rheology, Macromol. Mater. Eng. 287, 83–105.

    Article  CAS  Google Scholar 

  • Wilhelm, M., D. Maring, and H.W. Spiess, 1998, Fourier-transform rheology, Rheol. Acta 37, 399–405.

    Article  CAS  Google Scholar 

  • Wilhelm, M., P. Reinheimer, and M. Ortseifer, 1999, High sensitivity Fourier-transform rheology, Rheol. Acta 38, 349–356.

    Article  CAS  Google Scholar 

  • Wolff, S. and M.J. Wang, 1993, Carbon black reinforcement of elastomers, In: Donnet, J.B., R.C. Bansal, and M.J. Wang, eds., Carbon Black Science and Technology, 2nd ed., CRC Press, New York, 289–355.

    Google Scholar 

  • Zhao, D., S. Ge, E. Senses, P. Akcora, J. Jestin, and S.K. Kumar, 2015, Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites, Macromolecules 48, 5433–5438.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF; grant no. 2018R1D1A1B07050934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Hyun, K. Characterization of polyethylene/silica nanocomposites using different rheological analyses. Korea-Aust. Rheol. J. 33, 25–36 (2021). https://doi.org/10.1007/s13367-021-0003-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0003-3

Keywords

Navigation