Skip to main content
Log in

A strategy to synthesize graphene-incorporated lignin polymer composite materials with uniform graphene dispersion and covalently bonded interface engineering

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Graphene-incorporated polymer composites have been demonstrated to have excellent mechanical and electrical properties. In the field of graphene-incorporated composite material synthesis, there are two main obstacles: Non-uniform dispersion of graphene filler in the matrix and weak interface bonding between the graphene filler and polymer matrix. To overcome these problems, we develop an in-situ polymerization strategy to synthesize uniformly dispersed and covalently bonded graphene/lignin composites. Graphene oxide (GO) was chemically modified by 4,4'-methylene diphenyl diisocyanate (MDI) to introduce isocyanate groups and form the urethane bonds with lignin macromonomers. Subsequential polycondensation reactions of lignin groups with caprolactone and sebacoyl chloride bring about a covalent network of modified GO and lignin-based polymers. The flexible and robust lignin polycaprolactone polycondensate/modified GO (Lig-GOm) composite membranes are achieved after vacuum filtration, which have tunable hydrophilicity and electrical resistance according to the contents of GOm. This research transforms lignin from an abundant biomass into film-state composite materials, paving a new way for the utilization of biomass wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonini, C., M. D’Auria, L. Emanuele, R. Ferri, R. Pucciariello, and A.R. Sabia, 2005, Polyurethanes and polyesters from lignin, J. Appl. Polym. Sci. 98, 1451–1456.

    Article  Google Scholar 

  • Chiono, V., P. Mozetic, M. Boffito, S. Sartori, E. Gioffredi, A. Silvestri, A. Rainer, S.M. Giannitelli, M. Trombetta, D. Nurzynska, F.D. Meglio, C. Castaldo, R. Miraglia, S. Montagnani, and G. Ciardelli, 2014, Polyurethane-based scaffolds for myocardial tissue engineering, Interface Focus 4, 20130045.

    Article  Google Scholar 

  • Ci, L., J. Suhr, V. Pushparaj, X. Zhang, and P.M. Ajayan, 2008, Continuous carbon nanotube reinforced composites, Nano Lett. 8, 2762–2766.

    Article  Google Scholar 

  • Feldman, D., M. Lacasse, and L.M. Beznaczuk, 1986, Ligninpolymer systems and some applications, Prog. Polym. Sci. 12, 271–299.

    Article  Google Scholar 

  • Fouda, A.N., A.B. El Basaty, and E.A. Eid, 2016, Photo-response of functionalized self-assembled graphene oxide on zinc oxide heterostructure to UV illumination, Nanoscale Res. Lett. 11, 13.

    Article  Google Scholar 

  • Hu, B., L. Miao, Y. Zhao, and C. Lü, 2017, Azide-assisted crosslinked quaternized polysulfone with reduced graphene oxide for highly stable anion exchange membranes, J. Membr. Sci. 530, 84–94.

    Article  Google Scholar 

  • Hung, W.S., C.H. Tsou, M. De Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, and J.Y. Lai, 2014, Cross-linking with diamine monomers to prepare composite graphene oxideframework membranes with varying d-spacing, Chem. Mater. 26, 2983–2990.

    Article  Google Scholar 

  • Kim, S.-K., Y.K. Kim, H. Lee, S.B. Lee, and H.S. Park, 2014, Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials, ChemSus-Chem. 7, 1094–1101.

    Article  Google Scholar 

  • Kudin, K.N., B. Ozbas, H.C. Schniepp, R.K. Prud’Homme, I.A. Aksay, and R. Car, 2008, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8, 36–41.

    Article  Google Scholar 

  • Lee, T., S.H. Min, M. Gu, Y.K. Jung, W. Lee, J.U. Lee, D.G. Seong, and B.S. Kim, 2015, Layer-by-layer assembly for graphene-based multilayer nanocomposites: Synthesis and applications, Chem. Mater. 27, 3785–3796.

    Article  Google Scholar 

  • Liu, J., X. Wu, J. He, J. Li, and Y. Lai, 2017, Preparation and performance of a novel gel polymer electrolyte based on poly (vinylidene fluoride)/graphene separator for lithium ion battery, Electrochim. Acta 235, 500–507.

    Article  Google Scholar 

  • Luong, N.D., N.T.T. Binh, D.O. Kim, D.S. Kim, S.H. Lee, B.J. Kim, Y.S. Lee, and J.D. Nam, 2012, An eco-friendly and efficient route of lignin extraction from black liquor and a ligninbased copolyester synthesis, Polym. Bull. 68, 879–890.

    Article  Google Scholar 

  • Luong, N.D., N.T.T. Binh, I.K. Park, S.H. Lee, D.S. Kim, Y.S. Lee, Y.K. Lee, B.W. Kim, K.H. Kim, H.K. Yoon, J.H. Yun, and J.D. Nam, 2013, Chemical and rheological characteristics of thermally stable kraft lignin polycondensates analyzed by dielectric properties, BioResources 8, 4518–4532.

    Google Scholar 

  • Nam, G.Y., J.S. Oh, I.K. Park, N.D. Luong, H.K. Yoon, S.H. Lee, Y. Lee, J.H. Yun, C.G. Lee, S.H. Hwang, and J.D. Nam, 2014, High molecular-weight thermoplastic polymerization of kraft lignin macromers with diisocyanate, BioResources 9, 2359–2371.

    Google Scholar 

  • Potts, J.R., D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, 2011, Graphene-based polymer nanocomposites, Polymer 52, 5–25.

    Article  Google Scholar 

  • Ramanathan, T., A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, and L.C. Brinson, 2008, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3, 327–331.

    Article  Google Scholar 

  • Rudolf, C., B. Boesl, and A. Agarwal, 2015, In situ indentation behavior of bulk multi-layer graphene flakes with respect to orientation, Carbon. 94, 872–878.

    Article  Google Scholar 

  • Stankovich, S., D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, 2006, Graphene-based composite materials, Nature 442, 282–286.

    Article  Google Scholar 

  • Thanh Binh, N.T., N.D. Luong, D.O. Kim, S.H. Lee, B.J. Kim, Y.S. Lee, and J.D. Nam, 2009, Synthesis of lignin-based thermoplastic copolyester using kraft lignin as a macromonomer, Compos. Interfaces 16, 923–935.

    Article  Google Scholar 

  • Wang, M., J. Oh, T. Ghosh, S. Hong, G. Nam, T. Hwang, and J.D. Nam, 2014a, An interleaved porous laminate composed of reduced graphene oxide sheets and carbon black spacers by in situ electrophoretic deposition, RSC Adv. 4, 3284–3292.

    Article  Google Scholar 

  • Wang, M., L.D. Duong, J.S. Oh, N.T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, and J.D. Nam, 2014b, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD), ACS Appl. Mat. Interfaces 6, 1747–1753.

    Google Scholar 

  • Wang, M., L.D. Duong, N.T. Mai, S. Kim, Y. Kim, H. Seo,Y.C. Kim, W. Jang, Y. Lee, J. Suhr, and J.D. Nam, 2015a, All-solidstate reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method, ACS Appl. Mat. Interfaces 7, 1348–1354.

    Article  Google Scholar 

  • Wang, Z., L. Yu, M. Ding, H. Tan, J. Li, and Q. Fu, 2011, Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly (lactic acid) and L-lysine diisocyanate, Polym. Chem. 2, 601–607.

    Article  Google Scholar 

  • Wang, Z., X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu, X. Sun and J.K. Kim, 2015b, Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mat. Interfaces. 7, 5538–5549.

  • Xiang, M., C. Li, and L. Ye, 2017, Structure and conformation of polyetheramine in confined space of graphene oxide and its enhancement on the electrically conductive properties of monomer casting nylon-6, Compos. Pt. A-Appl. Sci. Manuf. 95, 1–11.

    Article  Google Scholar 

  • Yan, D.X., H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wand, and Z.M. Li, 2015, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater. 25, 559–566.

    Article  Google Scholar 

  • Yousefi, N., X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J.K. Kim, 2014, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv. Mater. 26, 5480–5487.

    Article  Google Scholar 

  • Zhang, Y., Y. Huang, G. Yang, F. Bu, K. Li, I. Shakir, and Y. Xu, 2017, dispersion-assembly approach to synthesize threedimensional graphene/polymer composite aerogel as a powerful organic cathode for rechargeable Li and Na batteries, ACS Appl. Mat. Interfaces 9, 15549–15556.

    Article  Google Scholar 

  • Zhao, X., Y. Li, J. Wang, Z. Ouyang, J. Li, G. Wei, and Z. Su, 2014, Interactive oxidation-reduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties, ACS Appl. Mat. Interfaces 6, 4254–4263.

    Article  Google Scholar 

  • Zhu, Y., S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, 2010, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater. 22, 3906–3924.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Do Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Duong, L.D., Ma, Y. et al. A strategy to synthesize graphene-incorporated lignin polymer composite materials with uniform graphene dispersion and covalently bonded interface engineering. Korea-Aust. Rheol. J. 29, 207–213 (2017). https://doi.org/10.1007/s13367-017-0021-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-017-0021-3

Keywords

Navigation