Skip to main content
Log in

Abstract

Let k be a field, H a Hopf algebra with a bijective antipode, and A an H-dimodule algebra. We assume that there is an H-colinear algebra map from H to A. We generalize the Fundamental Theorem of (AH)-Hopf modules to (AH)-dimodules. For example, A could be a coquasitriangular Hopf algebra. When H is the group algebra kG of a multiplicatively abelian group G, an (AkG)-dimodule is just a G-graded A-module which is an \(A\#G\)-module and a G-dimodule. We also prove the Fundamental Theorem for Hopf Yetter–Drinfeld (AH)-modules, when H is cocommutative and A is a Hopf Yetter–Drinfeld H-module algebra. For example, A could be the regular Hopf Yetter–Drinfeld H-module algebra H or \(H^{op}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagheri, S., Wisbauer, R.: Hom-tensor relations for two-sided Hopf modules over quasi-Hopf algebras. Commun. Algebra 40(9), 3257–3287 (2012)

    Article  MathSciNet  Google Scholar 

  • Caenepeel, S., Beattie, M.: A cohomological approach to the Brauer-Long group and the groups of Galois extensions and strongly graded rings. Trans. Am. Math. Soc. 324(2), 747–775 (1991)

    Article  MathSciNet  Google Scholar 

  • Caenepeel, S., Van Oystaeyen, F., Zhang, Y.H.: Quantum Yang-Baxter module algebras. K- Theory 8(3), 231–255 (1994)

    Article  MathSciNet  Google Scholar 

  • Caenepeel, S., Van Oystaeyen, F., Zhang, Y.H.: The Brauer group of Yetter–Drinfeld module algebras. Trans. Am. Math. Soc. 349(9), 3737–3771 (1991)

    Article  MathSciNet  Google Scholar 

  • Cohen, M., Fischman, D., Montgomery, S.: On Yetter–Drinfeld categories and H-commutativity, Commun. Algebra 27(3), 1321–1345 (1999)

    Article  MathSciNet  Google Scholar 

  • Doi, Y.: On the structure of relative Hopf modules. Commun. Algebra 11(3), 243–255 (1983)

    Article  MathSciNet  Google Scholar 

  • Guédénon, T., Nango, C.L.: A Brauer–Clifford–Long group for the category of dyslectic \((S, H)\)-dimodule algebras. São Paulo J. Math. Sciences 16(2), 803–848 (2022). https://doi.org/10.1007/s40863-021-00242-3

    Article  MathSciNet  Google Scholar 

  • Hausser, F., Nill, F.: Integral theory for quasi-Hopf algebras, Preprint, (Math. QA 13 May 1999). arXiv:math/9904164v2

  • Long, F.W.: The Brauer group of dimodule algebra. J. Algebra 31(3), 559–601 (1974)

    Article  MathSciNet  Google Scholar 

  • Montgomery, S.: Hopf algebras and their actions on rings. CBMS Reg. Conf. Ser. in Math. 82, AMS, Providence RI, (1993)

  • Sweedler, M.: Hopf algebras. Benjamin, New York (1969)

    Google Scholar 

  • Yin, L.: Hopf modules in the category of Yetter–Drinfeld modules. Appl. Math. 7, 629–637 (2016)

    Article  Google Scholar 

  • Zhang, L.-Y., Tong, W.-T.: Quantum Yang-Baxter \(H\)-module algebras and their braided products. Commun. Algebra 31(5), 2471–2495 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Guédénon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guédénon, T. Fundamental Theorem for (AH)-dimodules. Beitr Algebra Geom (2023). https://doi.org/10.1007/s13366-023-00726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13366-023-00726-7

Keywords

Mathematics Subject Classification

Navigation