Skip to main content
Log in

Abstract

Pólya’s Positivstellensatz and Handelman’s Positivstellensatz are known to be concrete instances of the abstract Archimedean Representation Theorem for (commutative unital) rings. We generalise the Archimedean Representation Theorem to modules over rings. For example, consider the module of all symmetric matrices with entries in a polynomial ring, also known as matrix polynomials. Pólya’s Positivstellensatz and Handelman’s Positivstellensatz had been generalised by Scherer and Hol, and Lê  and Du’ respectively to matrix polynomials, using the method of effective estimates from analysis. We show that these two Positivstellensätze for matrix polynomials are concrete instances of our Archimedean Representation Theorem in the case of the module of symmetric matrix polynomials over the polynomial ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

    Google Scholar 

  • Becker, E., Schwartz, N.: Zum Darstellungssatz von Kadison-Dubois. (German) [On the representation theorem of Kadison-Dubois] Arch. Math. (Basel) 40(5), 421–428 (1983)

  • Berr, R., Wörmann, T.: Positive polynomials on compact sets. Manuscr. Math. 104(2), 135–143 (2001)

    Article  MathSciNet  Google Scholar 

  • Bonsall, F.F., Lindenstrauss, J., Phelps, R.R.: Extreme positive operators on algebras of functions. Math. Scand. 18, 161–182 (1966)

    Article  MathSciNet  Google Scholar 

  • Burgdorf, S., Scheiderer, C., Schweighofer, M.: Pure states, nonnegative polynomials and sums of squares. Comment. Math. Helv. 87(1), 113–140 (2012)

    Article  MathSciNet  Google Scholar 

  • Effros, E.G., Handelman, D.E., Shen, C.L.: Dimension groups and their affine representations. Am. J. Math. 102(2), 385–407 (1980)

    Article  MathSciNet  Google Scholar 

  • Eidelheit, M.: Zur Theorie der konvenxen Mengen in linearen normierten Räumen. Stud. Math. 6, 104–111 (1936)

    Article  Google Scholar 

  • Fritz, T.: Is the interior of the tensor product of two convex cones equal to the tensor product of their respective interiors?, URL (version: 2023-04-18): https://mathoverflow.net/q/445012

  • Goodearl, K.R., Handelman, D.: Rank functions and \(K_0\) of regular rings. J. Pure Appl. Algebra 7, 195–216 (1976)

    Article  MathSciNet  Google Scholar 

  • Goodearl, K.R., Handelman, D.E.: Metric completions of partially ordered abelian groups. Indiana Univ. Math. J. 29(6), 861–895 (1980)

    Article  MathSciNet  Google Scholar 

  • Handelman, D.: Positive polynomials and product type actions of compact groups. Mem. Am. Math. Soc. 54(320) (1985)

  • Handelman, D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pac. J. Math. 132, 35–62 (1988)

    Article  MathSciNet  Google Scholar 

  • Handelman, D., Higgs, D., Lawrence, J.: Directed abelian groups, countably continuous rings, and Rickart \(C^\ast \)-algebras. J. Lond. Math. Soc. (2) 21(2), 193–202 (1980)

    Article  MathSciNet  Google Scholar 

  • Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. University Press, Cambridge (1952)

    Google Scholar 

  • Kakutani, S.: Ein Beweis des Satzes von M. Eidelheit über konvexe Mengen. Proc. Imp. Acad. Tokyo 13(4), 93–94 (1937)

    MathSciNet  Google Scholar 

  • Krivine, J.-L.: Quelques propriétés des préordres dans les anneaux commutatifs unitaires. C. R. Acad. Sci. Paris 258, 3417–3418 (1964)

    MathSciNet  Google Scholar 

  • Krivine, J.-L.: Anneaux préordonnés. J. Anal. Math. 12, 307–326 (1964)

    Article  Google Scholar 

  • Lê, C.-T., Du’, T.-H.-B.: Handelman’s Positivstellensatz for polynomial matrices positive definite on polyhedra. Positivity 22(2), 449–460 (2018)

    Article  MathSciNet  Google Scholar 

  • Pólya, G.: Über positive Darstellung von Polynomen. Vierteljschr. Naturforsch. Ges. Zürich 73, 141–145 (1928). (in Collected Papers 2 (1974), MIT Press, 309–313)

    Google Scholar 

  • Powers, V., Reznick, B.: A new bound for Pólya’s theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Algebra 164, 221–229 (2001)

    Article  MathSciNet  Google Scholar 

  • Prestel, A., Delzell, C.N.: Positive Polynomials. From Hilbert’s 17th Problem to Real Algebra. Springer Monographs in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  • Scherer, C.W., Hol, C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program. 107, 189–211 (2006)

    Article  MathSciNet  Google Scholar 

  • Scheiderer, C.: Positivity and Sums of Squares: A Guide to Recent Results Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149. Springer, New York, pp. 271–324 (2009)

  • Wörmann, T.: Strikt positive Polynome in der semialgebraischen Geometrie, Doctoral dissertation, Universität Dortmund, (1998)

Download references

Acknowledgements

I am grateful for CheeWhye Chin’s encouragement to pursue this line of research. Thank you, Tim Netzer, for giving me a chance to speak at a conference at Universität Innsbruck on some ideas in this paper. I would also like to thank Tobias Fritz (2023), Xiangyu Liu, Mihai Putinar, Claus Scheiderer, Markus Schweighofer, Wing-Keung To, and the anonymous referees for discussions and input. Finally, without help from my better half, I would not have had the peace of mind to complete this note.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Proposition 4

Appendix: Proof of Proposition 4

There is nothing essentially original due to the author below—the following proof of Proposition 4 is that of Burgdorf et al. (2012, p. 123), and reproduced verbatim below only for the convenience of the reader.

The author’s only contribution is the observation that G being contained in A (and hence an ideal) is never used in the proof. As mentioned in loc. cit., precedents of Proposition 4 can be found in the work of Bonsall, Lindenstrauss and Phelps (Bonsall et al. (1966), Theorem 10), Krivine (1964b, Theorem 15) and Handelman (1985, Proposition 1.2).

Let ASGMu be as in Proposition 4. Given a map \(\Phi : G \rightarrow {\mathbb {R}}\), we associate to each \(f \in A\) satisfying \(\Phi (f \cdot u) \ne 0\) a map \(\Phi _f: G \rightarrow {\mathbb {R}}\) given by

$$\begin{aligned} \Phi _f(s) := \frac{\Phi (f \cdot s)}{\Phi (f \cdot u)}{} & {} (\forall s\in G). \end{aligned}$$
(10)

The reader can verify that if \(\Phi \) is a state of (GMu) and \(p \in S\) satisfies \(\Phi (p \cdot u) > 0\), then \(\Phi _p\) is also a state of (GMu). Furthermore, if \(\Phi \) is a state and \(p_1, p_2 \in S\) satisfy \(\Phi (p_1 \cdot u), \Phi (p_2 \cdot u) > 0\), so that \(p_1 + p_2 \in S\) and \(\Phi ((p_1 + p_2) \cdot u )> 0\), then \(\Phi _{p_1 + p_2}\) is a proper convex combination of the states \(\Phi _{p_1}\) and \(\Phi _{p_2}\):

$$\begin{aligned} \Phi (p_1 \cdot u) \Phi _{p_1} + \Phi (p_2 \cdot u) \Phi _{p_2} = \Phi ((p_1 + p_2) \cdot u) \Phi _{p_1 + p_2}. \end{aligned}$$
(11)

Proof of Proposition 4

Since \(S \subseteq A\) is archimedean and u is an order unit of (GM), it suffices to show that (1) holds whenever \(f \in S\) and \(s \in M\).

Let \(f \in S\) and \(s \in M\) be given. Then \(f \cdot u\in S \cdot M \subseteq M\). Hence \(\Phi (f \cdot u) \ge 0\). There are two cases: either \(\Phi (f \cdot u) = 0\) or \(\Phi (f \cdot u) > 0\).

Case 1: \(\Phi (f \cdot u) = 0\). Then u being an order unit of (GM) gives a positive integer \(n\) such that \(0 \le _M s \le _M nu\). Since M is closed under the S-action, \(0 \le _M f \cdot s \le _M nf \cdot u\). Now \(\Phi \) is monotone with respect to \(\le _M\), so

$$\begin{aligned} 0 \le \Phi (f \cdot s) \le n\Phi (f \cdot u) = 0, \end{aligned}$$
(12)

forcing \(\Phi (f \cdot s) = 0\) so that both sides of (1) equals to zero in this case.

Case 2: \(\Phi (f \cdot u) > 0\). Since \(S \subseteq A\) is archimedean, there is some positive integer \(n\) such that \(n- f \in S\). But increasing \(n\) if necessary, we may suppose that \(n> \Phi (f \cdot u)\). Then

$$\begin{aligned} \Phi ((n- f) \cdot u) = n\Phi (u) - \Phi (f \cdot u) = n- \Phi (f \cdot u) > 0. \end{aligned}$$
(13)

Since \(f, n- f\in S\) and \(\Phi (f \cdot u), \Phi ((n- f) \cdot u ) >0\), we may apply (11) to conclude that \(\Phi _n\) is a proper convex combination of \(\Phi _f\) and \(\Phi _{n- f}\). But \(\Phi _n= \Phi \) (by direct calculation, using the fact that \(n\) is a scalar), so the purity of \(\Phi \) implies that \(\Phi _f = \Phi \), which is just (1). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C. Archimedean Representation Theorem for modules over a commutative ring. Beitr Algebra Geom (2023). https://doi.org/10.1007/s13366-023-00723-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13366-023-00723-w

Keywords

Mathematics Subject Classification

Navigation