Skip to main content

Advertisement

Log in

Momordica charantia phytoconstituents can inhibit human T-lymphotropic virus type-1 (HTLV-1) infectivity in vitro and in vivo

  • SI: HTLV-1 Revisited
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

There is an urgent need to find an effective therapy for life-threatening HTLV-1-associated diseases. Bitter melon (Momordica charantia) is considered a traditional herb with antiviral and anticancer properties and was tested in this study on HTLV-1 infectivity. GC–MS analyzed the alcoholic extract. In vitro assay was carried out using transfection of HUVEC cells by HTLV-1-MT2 cell line. The cells were exposed to alcoholic and aqueous extracts at 5,10, and 20 µg/mL concentrations. In vivo, mice were divided into four groups. Three groups were treated with HTLV-1-MT-2 cells as test groups and positive control, and PBS as the negative control group in the presence and absence of M. charantia extracts. Peripheral blood mononuclear cells (PBMCs), mesenteric lymph nodes (MLNs), and splenocytes were collected for HTLV-1-proviral load (PVL) assessment, TaqMan-qPCR. The GC–MS analysis revealed 36 components in M. charantia. The studies showed significant reductions in HTLV-1-PVL in the presence of extract in the HUVEC-treated groups (P = 0.001). Furthermore, the inhibitory effects of extracts on HTLV-1 infected mice showed significant differences in HTLV-1-PVL among M. charantia treated groups with untreated (P = 0.001). The T-cells in MLNs were significantly more susceptible to HTLV-1 than others (P = 0.001). There were significant differences among HTLV-1-infected cells in MLNs and splenocytes (P = 0.001 and 0.046, respectively). Also, aqueous and alcoholic extract-treated groups significantly affected HTLV-1-infected PBMCs (P = 0.002 and 0.009, respectively). M. charantia may have effective antiviral properties. The substantial compound of M. charantia could have inhibitory effects on the proliferation and transmission of HTLV-1 oncovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data supporting this study’s findings are included in the manuscript and are available from the corresponding author upon reasonable request.

References

  • Ahmadi Ghezeldasht S, Shamsian SAA, Gholizadeh Navashenaq J, Miri R, Ashrafi F, Mosavat A, Rezaee SA (2021) HTLV-1 oncovirus-host interactions: from entry to the manifestation of associated diseases. Rev Med Virol 31:e2235

    Article  PubMed  Google Scholar 

  • Akihisa T, Tokuda H, Ichiishi E, Mukainaka T, Toriumi M, Ukiya M, Yasukawa K, Nishino H (2001) Anti-tumour promoting effects of multiflorane-type triterpenoids and cytotoxic activity of karounidiol against human cancer cell lines. Cancer Lett 173:9–14

    Article  CAS  PubMed  Google Scholar 

  • Araujo A, Bangham C, Casseb J, Gotuzzo E, Jacobson S, Martin F, Penalva A, Puccioni-Sohler M, Taylor GP, Yamano Y (2018) International Retrovirology Association guidelines for the management of HTLV-1-associated myelopathy/tropical spastic paraparesis; 2018. Washington (DC): International Retrovirology Association

  • Behera T, Behera S, Bharathi L, John K, Simon P, Staub J (2010) Horticulture reviews. Bitter Gourd: Botany, Horticulture, Breeding Wiley Blackwell 37:101–141

    Google Scholar 

  • Benencia F, Courreges M (1999) Antiviral activity of sandalwood oil against herpes simplex viruses-1 and-2. Phytomedicine 6:119–123

    Article  CAS  PubMed  Google Scholar 

  • Bortolotti M, Mercatelli D, Polito L (2019) Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front Pharmacol 10:486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos MA, Rosinha GM, Almeida IC, Salgueiro XS, Jarvis BW, Splitter GA, Qureshi N, Bruna-Romero O, Gazzinelli RT, Oliveira SC (2004) Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 72:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA (2014) Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 14:361–376

    Article  CAS  PubMed  Google Scholar 

  • Chao C-Y, Sung P-J, Wang W-H, Kuo Y-H (2014) Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules 19:12777–12788

    Article  PubMed  PubMed Central  Google Scholar 

  • Citores L, Iglesias R, Ferreras JM (2021) Antiviral Activity of Ribosome-Inactivating Proteins Toxins 13:80

    CAS  PubMed  Google Scholar 

  • Costa JGM, Nascimento EM, Campos AR, Rodrigues FF (2010) Antibacterial activity of Momordica charantia (Curcubitaceae) extracts and fractions. Journal of Basic and Clinical Pharmacy 2:45

    PubMed  Google Scholar 

  • Dandawate PR, Subramaniam D, Padhye SB, Anant S (2016) Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med 14:81–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Logu A, Loy G, Pellerano ML, Bonsignore L, Schivo ML (2000) Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Res 48:177–185

    Article  PubMed  Google Scholar 

  • Deng Y-Y, Yi Y, Zhang L-F, Zhang R-F, Zhang Y, Wei Z-C, Tang X-J, Zhang M-W (2014) Immunomodulatory activity and partial characterisation of polysaccharides from Momordica charantia. Molecules 19:13432–13447

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodon MD, Villaudy J, Gazzolo L, Haines R, Lairmore M (2012) What we are learning on HTLV-1 pathogenesis from animal models. Front Microbiol 3:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Elena P, Xudong L, Karen D, James M, Jean-Claude V, Carol T, Yanze L, David L, Mario C (2008) Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase.

  • Fang FE, Ng BT, (2011) Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties. Curr Mol Med 11:417–436

  • Frame AD, Ríos-Olivares E, De Jesús L, Ortiz D, Pagán J, Méndez S (1998) Plants from Puerto Rico with anti-Mycobacterium tuberculosis properties. P R Health Sci J 17:243–252

    CAS  PubMed  Google Scholar 

  • Furuichi Y, Shatkin A, Stavnezer E, Bishop J (1975) Blocked, methylated 5′-terminal sequence in avian sarcoma virus RNA. Nature 257:618–620

    Article  CAS  PubMed  Google Scholar 

  • Gaglia MM (2021) Antiviral and proinflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virology Journal 18:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geneva S (2004) WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. [Google Scholar]

  • Grover J, Yadav S (2004) Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol 93:123–132

    Article  CAS  PubMed  Google Scholar 

  • Hachiman M, Yoshimitsu M, Ezinne C, Kuroki A, Kozako T, Arima N (2018) In vitro effects of arsenic trioxide, interferon α and zidovudine in adult T cell leukemia/lymphoma cells. Oncol Lett 16:1305–1311

    PubMed  PubMed Central  Google Scholar 

  • Haque ME, Alam MB, Hossain MS (2011) The efficacy of cucurbitane type triterpenoids, glycosides and phenolic compounds isolated from Momordica charantia: a review. Int J Pharm Sci Res 2:1135

    Google Scholar 

  • Hleihel R, Akkouche A, Skayneh H, Hermine O, Bazarbachi A, El Hajj H (2021) Adult T-cell leukemia: a comprehensive overview on current and promising treatment modalities. Curr Oncol Rep 23:141

    Article  CAS  PubMed  Google Scholar 

  • Hsiao P-C, Liaw C-C, Hwang S-Y, Cheng H-L, Zhang L-J, Shen C-C, Hsu F-L, Kuo Y-H (2013) Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. J Agric Food Chem 61:2979–2986

    Article  CAS  PubMed  Google Scholar 

  • Hwang DH, Kim J-A, Lee JY (2016) Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol 785:24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Jini D (2013) Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease 3:93–102

    Article  PubMed Central  Google Scholar 

  • Juszczak AM, Zovko-Končić M, Tomczyk M (2019) Recent trends in the application of chromatographic techniques in the analysis of luteolin and its derivatives. Biomolecules 9:731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai H, Akamatsu E, Torii E, Kodama H, Yukizaki C, Sakakibara Y, Suiko M, Morishita K, Kataoka H, Matsuno K (2011) Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (ATL)-related cell lines. J Nat Med 65:651–655

    Article  PubMed  Google Scholar 

  • Kalinichenko S, Komkov D (2022) HIV-1 and HTLV-1 transmission modes: mechanisms and importance for virus spread. 14

  • Kane SE, Beemon K (1985) Precise localisation of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol 5:2298–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur M, Deep G, Jain AK, Raina K, Agarwal C, Wempe MF, Agarwal R (2013) Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis 34:1585–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kongtun S, Jiratchariyakul W, Kummalue T, Tan-ariya P, Kunnachak S, Frahm AW (2009) Cytotoxic properties of root extract and fruit juice of Trichosanthes cucumerina. Planta Med 75:839–842

    Article  CAS  PubMed  Google Scholar 

  • Krug RM, Morgan MA, Shatkin AJ (1976) Influenza viral mRNA contains internal N6-methyladenosine and 5’-terminal 7-methylguanosine in cap structures. J Virol 20:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavi S, Shatkin AJ (1975) Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc Natl Acad Sci 72:2012–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DY-W, Lin X, Paskaleva EE, Liu Y, Puttamadappa SS, Thornber C, Drake JR, Habulin M, Shekhtman A, Canki M (2009a) Palmitic acid is a novel CD4 fusion inhibitor that blocks HIV entry and infection. AIDS Res Hum Retroviruses 25:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lertphadungkit P, Suksiriworapong J, Satitpatipan V, Sirikantaramas S, Wongrakpanich A, Bunsupa S (2020) Enhanced production of bryonolic acid in Trichosanthes cucumerina L.(Thai Cultivar) cell cultures by elicitors and their biological activities. Plants 9:709

  • Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S (2009) Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr 102:1703–1708

    Article  CAS  PubMed  Google Scholar 

  • Li H-B, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y (2017) m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MM, MacDonald MR, Rice CM (2015) To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 25:320–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin J-H, Ting P-C, Lee W-S, Chiu H-W, Chien C-A, Liu C-H, Sun L-Y, Yang K-T (2019) Palmitic acid methyl ester induces G2/M arrest in human bone marrow-derived mesenchymal stem cells via the p53/p21 pathway. Stem cells international

  • Liu Z, Gong J, Huang W, Lu F, Dong H (2021) The effect of Momordica charantia in the treatment of diabetes mellitus: a review. Evidence-Based Complementary and Alternative Medicine

  • Lu K-H, Tseng H-C, Liu C-T, Huang C-J, Chyuan J-H, Sheen L-Y (2014) Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food Funct 5:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Whittaker P, Keller AC, Mazzola EP, Pawar RS, White KD, Callahan JH, Kennelly EJ, Krynitsky AJ, Rader JI (2010) Cucurbitane-type triterpenoids from Momordica charantia. Planta Med 76:1758–1761

    Article  CAS  PubMed  Google Scholar 

  • Manik S, Gauttam V, Kalia A (2013) Anti-diabetic and antihyperlipidemic effect of allopolyherbal formulation in OGTT and STZ-induced diabetic rat model

  • Mattio LM, Catinella G, Pinto A, Dallavalle S (2020) Natural and nature-inspired stilbenoids as antiviral agents. Eur J Med Chem 202:112541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minami M, Kita M, Nakaya T, Yamamoto T, Kuriyama H, Imanishi J (2003) The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol Immunol 47:681–684

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuki Y, Shiraishi Y, Nagata K, Hinuma Y (1981) Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 294:770–771

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi O, Nachshon A, Shitrit A, Gelbart IA, Dobesova M, Brenner S, Kahana C, Stern-Ginossar N (2018) Virus-induced changes in mRNA secondary structure uncover cis-regulatory elements that directly control gene expression. Mol Cell 72(862–874):e5

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nachtergaele S, He C (2018) Chemical modifications in the life of an mRNA transcript. Annu Rev Genet 52:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazmand S, Gowhari Shabgah A, Hosseinian S, Gholizadeh Navashenaq J, Kamali A, Khazdair MR, Baghcheghi Y, Hedayati-Moghadam M (2022) The effect of HTLV1 infection on inflammatory and oxidative parameters in the liver, kidney, and pancreases of BALB/c mice. Physiol Rep 10:e15243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas DA, Zhang K, Hung C, Glasgow S, Aruni AW, Unternaehrer J, Payne KJ, Langridge WH, De Leon M (2017) Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One 12:e0176793

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitta T, Tanaka M, Sun B, Hanai S, Miwa M (2003) The genetic background as a determinant of human T-cell leukemia virus type 1 proviral load. Biochem Biophys Res Commun 309:161–165

    Article  CAS  PubMed  Google Scholar 

  • Organization WH (2013) WHO traditional medicine strategy: 2014–2023. World Health Organization

    Google Scholar 

  • Parikh BA, Tumer NE (2004) Antiviral activity of ribosome inactivating proteins in medicine. Mini Rev Med Chem 4:523–543

    Article  CAS  PubMed  Google Scholar 

  • Pires BR, Silva RC, Ferreira GM, Abdelhay E (2018) NF-kappaB: two sides of the same coin. Genes 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Pongthanapisith V, Ikuta K, Puthavathana P, Leelamanit W (2013) Antiviral protein of Momordica charantia L. inhibits different subtypes of Influenza A. Evidence-Based Complementary and Alternative Medicine

  • Puri M, Kaur I, Perugini MA, Gupta RC (2012) Ribosome-inactivating proteins: current status and biomedical applications. Drug Discovery Today 17:774–783

    Article  CAS  PubMed  Google Scholar 

  • Rafatpanah H, Rezaee A, Etemadi MM, Hosseini RF, Khorram B, Afsahr L, Taylor G, Mokhber N, Mahmoudi M, Abbaszadegan MR (2012) The impact of interferon-alpha treatment on clinical and immunovirological aspects of HTLV-1-associated myelopathy in northeast Iran. J Neuroimmunol 250:87–93

    Article  CAS  PubMed  Google Scholar 

  • Sabouri AH, Saito M, Usuku K, Bajestan SN, Mahmoudi M, Forughipour M, Sabouri Z, Abbaspour Z, Goharjoo ME, Khayami E (2005) Differences in viral and host genetic risk factors for development of human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis between Iranian and Japanese HTLV-1-infected individuals. J Gen Virol 86:773–781

    Article  CAS  PubMed  Google Scholar 

  • Sahoo N, Manchikanti P (2013) Herbal drug regulation and commercialisation: an Indian industry perspective. J Altern Complement Med 19:957–963

    Article  PubMed  PubMed Central  Google Scholar 

  • Saikh KU (2021) MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunol Res 69:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos KK, Matias EF, Sobral-Souza CE, Tintino SR, Morais-Braga MF, Guedes GM, Santos FA, A. Sousa AC, Rolón M, Vega C, (2012) Trypanocide, cytotoxic, and antifungal activities of Momordica charantia. Pharm Biol 50:162–166

    Article  PubMed  Google Scholar 

  • Schwerk J, Jarret AP, Joslyn RC, Savan R (2015) Landscape of post-transcriptional gene regulation during hepatitis C virus infection. Curr Opin Virol 12:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar S, Wu X, Friis T, Crawford R, Prasadam I, Xiao Y (2018) Saturated fatty acids promote chondrocyte matrix remodeling through reprogramming of autophagy pathways. Nutrition 54:144–152

    Article  CAS  PubMed  Google Scholar 

  • Shafifar M, Mozhgani S-H, Pashabayg KR, Mosavat A, Karbalaei M, Norouzi M, Rezaee SA (2022) Selective APC-targeting of a novel Fc-fusion multi-immunodominant recombinant protein (tTax-tEnv: mFcγ2a) for HTLV-1 vaccine development. Life Sci 308:120920

    Article  CAS  PubMed  Google Scholar 

  • Shih C-C, Lin C-H, Lin W-L (2008) Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 81:134–143

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Sun B, Fang J, Nitta T, Yoshida T, Kohtoh S, Kikukawa H, Hanai S, Uchida K, Miwa M (2001) Human T-cell leukemia virus type 1 (HTLV-1) infection of mice: proliferation of cell clones with integrated HTLV-1 provirus in lymphoid organs. J Virol 75:4420–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezuka K, Xun R, Tei M, Ueno T, Tanaka M, Takenouchi N, Fujisawa J-i (2014) An animal model of adult T-cell leukemia: humanised mice with HTLV-1–specific immunity. Blood 123:346–355

    Article  CAS  PubMed  Google Scholar 

  • Tsukasaki K, Utsunomiya A, Fukuda H, Shibata T, Fukushima T, Takatsuka Y, Ikeda S, Masuda M, Nagoshi H, Ueda R (2007) VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol 25:5458–5464

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay A, Agrahari P, Singh D (2015) A review on salient pharmacological features of Momordica charantia. Int J Pharmacol 11:405–413

    Article  Google Scholar 

  • Wang D, Wang J (2020) Antiviral immune mechanism of Toll-like receptor 4-mediated human alveolar epithelial cells type II. Exp Ther Med 20:2561–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Shaoyun W, Shutao L, Jianwu Z, Lijing K, Pingfan R (2013) Increase in the free radical scavenging capability of bitter gourd by a heat-drying process. Food Funct 4:1850–1855

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wang W, Zhao Y, Qiao H, Gao Z, Chuai X (2021) Regulation of antiviral immune response by N (6)-methyladenosine of mRNA. Front Microbiol 12:789605

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Dong Y, Qian X, Cui F, Guo Q, Zhou X, Wang Y, Zhang Y, Xiong Z (2012) Effect of superfine grinding on antidiabetic activity of bitter melon powder. Int J Mol Sci 13:14203–14218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The results described in this paper were part of the student thesis. This study was subjected to a PhD thesis in Medical Immunology by Sanaz Ahmadi Ghezedasht. The authors greatly thank the Vice-Chancellor for Research and Technology, Mashhad University of Medical Sciences and the Vice-Chancellor for Research and Technology of ACECR-Razavi Khorasan, Mashhad, for financially supporting the present study.

Funding

This study was financially supported by the Vice-Chancellor for Research and Technology, Mashhad University of Medical Sciences, Mashhad, Iran, under Grant (MUMS 971409) and the Vice-Chancellor for Research and Technology of ACECR-Razavi Khorasan, Mashhad, under Grant (ACECR 3089–20).

Author information

Authors and Affiliations

Authors

Contributions

SAR: planned, data analysed, supervised, revised, and finalised the manuscript. SAG, AM, AB and RM: performed the experiments and manuscript drafting. HRB and AM: research advisors and preparing experimental facilities and kits. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Arman Mosavat or Seyed Abdolrahim Rezaee.

Ethics declarations

Ethics approval

The animal experiments were reviewed and approved by the Biomedical Research Ethics Committee of the Mashhad University of Medical Sciences (IR.MUMS.REC.971409). All methods were performed following relevant guidelines and regulations. All surgery was performed under sodium pentobarbital anaesthesia, and all efforts were made to minimise suffering.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi Ghezeldasht, S., Bidkhori, H., Miri, R. et al. Momordica charantia phytoconstituents can inhibit human T-lymphotropic virus type-1 (HTLV-1) infectivity in vitro and in vivo. J. Neurovirol. (2023). https://doi.org/10.1007/s13365-023-01160-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13365-023-01160-0

Keywords

Navigation