Skip to main content

Advertisement

Log in

Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder

  • Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

HIV-associated neurocognitive disorder (HAND) is a collective term describing the spectrum of neurocognitive deficits that arise from HIV infection. Although the introduction to highly active antiretroviral therapy (HAART) has prolonged the lifespan of HIV patients, neurocognitive impairments remain prevalent, as patients are left perpetually with HIV. Currently, physicians face a challenge in treating HAND patients, so a greater understanding of the mechanisms underlying HAND pathology has been a growing focus in HIV research. Recent research has revealed the role disrupted calcium homeostasis in HIV-mediated neurotoxicity. Calcium plays a well-established role in the crosstalk between the mitochondrion and ER as well as in regulating autophagy, and ER stress, mitochondrial dysfunction, and impaired autophagic activity are considered hallmarks in several neurodegenerative and neurocognitive disorders. Therefore, it is paramount that the intricate inter-organelle signaling in relation to calcium homeostasis during HIV infection and the development of HAND is elucidated. This review consolidates current knowledge regarding the neuropathology of neurocognitive disorders and HIV infection with a focus on the underlying role of calcium during ER stress, mitochondrial dysfunction, and autophagy associated with the progression of HAND. The details of this intricate crosstalk during HAND remain relatively unknown; further research in this field can potentially aid in the development of improved therapy for patients suffering from HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achim CL, HNRC, Adame A et al (2009) Increased accumulation of Intraneuronal amyloid β in HIV-infected patients. J NeuroImmune Pharmacol 4:190–199

    PubMed  PubMed Central  Google Scholar 

  • Afghah Z, Chen X, Geiger JD (2020) Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 134:104670

    CAS  PubMed  Google Scholar 

  • Alirezaei M, Kiosses WB, Fox HS (2008) Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity. Autophagy 4:963–966

    CAS  PubMed  Google Scholar 

  • András IE, Toborek M (2013) Amyloid beta accumulation in HIV-1-infected brain: the role of the blood brain barrier. IUBMB Life 65:43–49

    PubMed  Google Scholar 

  • Bhatti AB, Usman M, Kandi V (2016) Current scenario of HIV/AIDS, treatment options, and major challenges with compliance to antiretroviral therapy. Cureus 8:e515

    PubMed  PubMed Central  Google Scholar 

  • Brabers NACH, Nottet HSLM (2006) Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Investig 36:447–458

    CAS  Google Scholar 

  • Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S (2016a) Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12:225–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S (2016b) Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12:225–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calì T, Ottolini D, Brini M (2013) Calcium and endoplasmic reticulum-mitochondria tethering in neurodegeneration. DNA Cell Biol 32:140–146

    PubMed  Google Scholar 

  • Cárdenas C, Kevin Foskett J (2012) Mitochondrial Ca2 signals in autophagy. Cell Calcium 52:44–51

    PubMed  PubMed Central  Google Scholar 

  • Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66:253–258

    PubMed  Google Scholar 

  • Contreras X, Bennasser Y, Chazal N, Moreau M, Leclerc C, Tkaczuk J, Bahraoui E (2005) Human immunodeficiency virus type 1 Tat protein induces an intracellular calcium increase in human monocytes that requires DHP receptors: involvement in TNF-alpha production. Virology 332:316–328

    PubMed  Google Scholar 

  • Dahabieh MS, Battivelli E, Verdin E (2015) Understanding HIV latency: the road to an HIV cure. Annu Rev Med 66:407–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    PubMed  Google Scholar 

  • Dinkins C, Arko-Mensah J, Deretic V (2010) Autophagy and HIV. Semin Cell Dev Biol 21:712–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hage N, Rodriguez M, Dever SM et al (2015) HIV-1 and morphine regulation of autophagy in microglia: limited interactions in the context of HIV-1 infection and opioid abuse. J Virol 89:1024–1035

    PubMed  Google Scholar 

  • Fan Y, He JJ (2016) HIV-1 Tat induces unfolded protein response and endoplasmic reticulum stress in astrocytes and causes neurotoxicity through glial fibrillary acidic protein (GFAP) activation and aggregation. J Biol Chem 291:22819–22829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41

    CAS  PubMed  Google Scholar 

  • Fernandez JV, Munir A (2019) Abacavir. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Fields J, Dumaop W, Elueteri S et al (2015) HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 35:1921–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fields JA, Serger E, Campos S, Divakaruni AS, Kim C, Smith K, Trejo M, Adame A, Spencer B, Rockenstein E, Murphy AN, Ellis RJ, Letendre S, Grant I, Masliah E (2016) HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis 86:154–169

    CAS  PubMed  Google Scholar 

  • Fischer-Smith T, Bell C, Croul S, Lewis M, Rappaport J (2008) Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies. J Neurovirol 14:318–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner BM, Pincus D, Gotthardt K et al (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5:a013169–a013169

    PubMed  PubMed Central  Google Scholar 

  • Gelman BB, Wolf DA, Rodriguez-Wolf M, West AB, Haque AK, Cloyd M (1997) Mononuclear phagocyte hydrolytic enzyme activity associated with cerebral HIV-1 infection. Am J Pathol 151:1437–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman BB, Soukup VM, Holzer CE 3rd et al (2005) Potential role for white matter lysosome expansion in HIV-associated dementia. J Acquir Immune Defic Syndr 39:422–425

    CAS  PubMed  Google Scholar 

  • Hegg CC, Hu S, Peterson PK, Thayer SA (2000) Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia. Neuroscience 98:191–199

    CAS  PubMed  Google Scholar 

  • Hu X-T (2015) HIV-1 tat-mediated calcium dysregulation and neuronal dysfunction in vulnerable brain regions. Curr Drug Targets 17:4–14

    Google Scholar 

  • Huang C-Y, Chiang S-F, Lin T-Y, Chiou SH, Chow KC (2012) HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS One 7:e33657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4:243–252

    CAS  PubMed  Google Scholar 

  • Jeffrey A, Rumbaugh WT (2015) HIV-associated neurocognitive disorders: five new things. Neurol Clin Pract 5:224

    Google Scholar 

  • Kania E, Pająk B, Orzechowski A (2015) Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int 2015:352794

    PubMed  PubMed Central  Google Scholar 

  • Kiriyama Y, Nochi H (2015) The function of autophagy in neurodegenerative diseases. Int J Mol Sci 16:26797–26812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruman II, Nath A, Mattson MP (1998) HIV-1 protein tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288

    CAS  PubMed  Google Scholar 

  • Letendre SL, Ellis RJ, Everall I, Ances B, Bharti A, McCutchan J (2009) Neurologic complications of HIV disease and their treatment. Top HIV Med 17:46–56

    PubMed  PubMed Central  Google Scholar 

  • Li J-Q, Yu J-T, Jiang T, Tan L (2015) Endoplasmic reticulum dysfunction in Alzheimer’s disease. Mol Neurobiol 51:383–395

    CAS  PubMed  Google Scholar 

  • Lindl KA, Akay C, Wang Y, White MG, Jordan-Sciutto KL (2007) Expression of the endoplasmic reticulum stress response marker, BiP, in the central nervous system of HIV-positive individuals. Neuropathol Appl Neurobiol 33:658–669

    CAS  PubMed  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    CAS  PubMed  Google Scholar 

  • Ma R, Yang L, Niu F, Buch S (2016) HIV Tat-mediated induction of human brain microvascular endothelial cell apoptosis involves endoplasmic reticulum stress and mitochondrial dysfunction. Mol Neurobiol 53:132–142

    CAS  PubMed  Google Scholar 

  • Makar TK, Gerzanich V, Nimmagadda VKC et al (2015) Silencing of Abcc8 or inhibition of newly upregulated Sur1-Trpm4 reduce inflammation and disease progression in experimental autoimmune encephalomyelitis. J Neuroinflammation 12

  • Mehla R, Chauhan A (2015) HIV-1 differentially modulates autophagy in neurons and astrocytes. J Neuroimmunol 285:106–118

    CAS  PubMed  Google Scholar 

  • Nie T, Yang S, Ma H, Zhang L, Lu F, Tao K, Wang R, Yang R, Huang L, Mao Z, Yang Q (2016) Regulation of ER stress-induced autophagy by GSK3β-TIP60-ULK1 pathway. Cell Death Dis 7:e2563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu F, Yao H, Zhang W, Sutliff RL, Buch S (2014) Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci 34:11812–11825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nooka S, Ghorpade A (2017) HIV-1-associated inflammation and antiretroviral therapy regulate astrocyte endoplasmic reticulum stress responses. Cell Death Discov 3:17061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nooka S, Ghorpade A (2018) Organellar stress intersects the astrocyte endoplasmic reticulum, mitochondria and nucleolus in HIV associated neurodegeneration. Cell Death Dis 9:317

    PubMed  PubMed Central  Google Scholar 

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    CAS  PubMed  Google Scholar 

  • Okamoto K, Kondo-Okamoto N (2012) Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 1820:595–600

    CAS  PubMed  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Platt FM, Boland B, van der Spoel AC (2012) Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199:723–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poggi A, Rubartelli A, Zocchi MR (1998) Involvement of dihydropyridine-sensitive calcium channels in human dendritic cell function. Competition by HIV-1 Tat. J Biol Chem 273:7205–7209

    CAS  PubMed  Google Scholar 

  • Rainbolt TK, Kelly Rainbolt T, Saunders JM, Luke Wiseman R (2014) Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab 25:528–537

    CAS  PubMed  Google Scholar 

  • Rashid H-O, Yadav RK, Kim H-R, Chae H-J (2015) ER stress: autophagy induction, inhibition and selection. Autophagy 11:1956–1977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozzi SJ, Avdoshina V, Fields JA, Trejo M, Ton HT, Ahern GP, Mocchetti I (2017) Human immunodeficiency virus promotes mitochondrial toxicity. Neurotox Res 32:723–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozzi SJ, Avdoshina V, Fields JA, Mocchetti I (2018) Human immunodeficiency virus Tat impairs mitochondrial fission in neurons. Cell Death Discov 4:8

    PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224

    CAS  PubMed  Google Scholar 

  • Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470

    CAS  PubMed  Google Scholar 

  • Sano R, Hou Y-CC, Hedvat M et al (2012) Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy. Genes Dev 26:1041–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardo L, Iordanskiy S, Klase Z, Kashanchi F (2015) HIV-1 Nef blocks autophagy in human astrocytes. Cell Cycle 14:3781–3782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder—pathogenesis and prospects for treatment. Nat Rev Neurol 12:234–248

    PubMed  PubMed Central  Google Scholar 

  • Schuenke K, Gelman BB (2003) Human microglial cell isolation from adult autopsy brain: brain pH, regional variation, and infection with human immunodeficiency virus type 1. J Neurovirol 9:346–357

    PubMed  Google Scholar 

  • Senft D, Ronai ZA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 40:141–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strijbos PJ, Zamani MR, Rothwell NJ et al (1995) Neurotoxic mechanisms of transactivating protein Tat of Maedi-Visna virus. Neurosci Lett 197:215–218

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    CAS  PubMed  Google Scholar 

  • Vannuvel K, Renard P, Raes M, Arnould T (2013) Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 228:1802–1818

    CAS  PubMed  Google Scholar 

  • Vartak-Sharma N, Nooka S, Ghorpade A (2017) Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 157:133–157

    CAS  PubMed  Google Scholar 

  • Wang Y, Santerre M, Tempera I, Martin K, Mukerjee R, Sawaya BE (2017) HIV-1 Vpr disrupts mitochondria axonal transport and accelerates neuronal aging. Neuropharmacology 117:364–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig 115:2656–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin F, Boveris A, Cadenas E (2014) Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 20:353–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H-S, Wu M-R (2009) SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase. Virus Res 146:51–57

    CAS  PubMed  Google Scholar 

  • Zündorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14:1275–1288

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors listed above have significantly contributed to the review and agreed jointly to approve it for publication.

Corresponding author

Correspondence to Tapas K. Makar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andhavarapu, S., Katuri, A., Bryant, J. et al. Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder. J. Neurovirol. 26, 664–675 (2020). https://doi.org/10.1007/s13365-020-00861-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-020-00861-0

Keywords

Navigation