Skip to main content

Advertisement

Log in

The immune response in the CNS in Theiler’s virus induced demyelinating disease switches from an early adaptive response to a chronic innate-like response

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is an important model of the progressive disability caused by irreversible CNS tissue injury, and provides an example of how a CNS pathogen can cause inflammation, demyelination, and neuronal damage. We were interested in which molecules, especially inflammatory mediators, might be upregulated in the CNS throughout TMEV-IDD. We quantitated by a real-time RT-PCR multi-gene system the expression of a pathway-focused panel of genes at 30 and 165 days post infection, characterizing both the early inflammatory and the late neurodegenerative stages of TMEV-IDD. Also, we measured 32 cytokines/chemokines by multiplex Luminex analysis in CSF specimens from early and late TMEV-IDD as well as sham-treated mice. Results indicate that, in the later stage of TMEV-IDD, activation of the innate immune response is most prominent: TLRs, type I IFN response genes, and innate immunity-associated cytokines were highly expressed in late TMEV-IDD compared to sham (p ≤ 0.0001) and early TMEV-IDD (p < 0.05). Conversely, several molecular mediators of adaptive immune response were highly expressed in early TMEV-IDD (all p ≤ 0.001). Protein detection in the CSF was broadly concordant with mRNA abundance of the corresponding gene measured by real-time RT-PCR in the spinal cord, since several cytokines/chemokines were increased in the CSF of TMEV-IDD mice. Results show a clear shift from adaptive to innate immunity from early to late TMEV-IDD, indicating that adaptive and innate immune pathways are likely involved in the development and progression of the disease to different extents. CSF provides an optimal source of biomarkers of CNS neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arikawa E QG, Han Y, Pan H, Yang J (2011) RT2 Profiler™ PCR arrays: pathway-focused gene expression profiling with qRT-PCR. SABiosciences

  • Begolka WS, Vanderlugt CL, Rahbe SM, Miller SD (1998) Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J Immunol 161:4437–4446

    PubMed  CAS  Google Scholar 

  • Chang JR, Zaczynska E, Katsetos CD, Platsoucas CD, Oleszak EL (2000) Differential expression of TGF-beta, IL-2, and other cytokines in the CNS of Theiler’s murine encephalomyelitis virus-infected susceptible and resistant strains of mice. Virology 278:346–360

    Article  PubMed  CAS  Google Scholar 

  • Chastain EM, Duncan DS, Rodgers JM, Miller SD (2011) The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta 1812:265–274

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Croxford JL, Olson JK, Miller SD (2002) Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmun Rev 1:251–260

    Article  PubMed  CAS  Google Scholar 

  • Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50:329–339

    Article  PubMed  Google Scholar 

  • da Silva FAFG, da Silva IDCG, Gonçalves GA, de Almeida FA, de Noronha SAAC, de Noronha SMR, Nakamura MU (2014) Viscum album modulates apoptotic related genes in melanoma tumor of mice. Am J Mol Biol 4:49–58

    Article  Google Scholar 

  • Dal Canto MC, Lipton HL (1975) Primary demyelination in Theiler’s virus infection. An ultrastructural study. Lab Investig 33:626–637

    PubMed  CAS  Google Scholar 

  • Elgert KD (2009) Immunology: understanding the immune system. Wiley

  • Elliott R, Li F, Dragomir I, Chua MM, Gregory BD, Weiss SR (2013) Analysis of the host transcriptome from demyelinating spinal cord of murine coronavirus-infected mice. PLoS One 8:e75346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fainardi E, Castellazzi M, Bellini T, Manfrinato MC, Baldi E, Casetta I, Paolino E, Granieri E, Dallocchio F (2006) Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 12:294–301

    Article  PubMed  CAS  Google Scholar 

  • Fang L, Huber-Abel F, Teuchert M, Hendrich C, Dorst J, Schattauer D, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Tumani H, Ludolph AC, Brettschneider J (2009) Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J Neurol Sci 285:62–66

    Article  PubMed  CAS  Google Scholar 

  • Gentilini D, Perino A, Vigano P, Chiodo I, Cucinella G, Vignali M, Di Blasio AM, Busacca M (2011) Gene expression profiling of peripheral blood mononuclear cells in endometriosis identifies genes altered in non-gynaecologic chronic inflammatory diseases. Hum Reprod 26:3109–3117

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gragnani A, Cezillo MV, da Silva ID, de Noronha SM, Correa-Noronha SA, Ferreira LM (2014) Gene expression profile of cytokines and receptors of inflammation from cultured keratinocytes of burned patients. Burns 40:947–956

    Article  PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Yang Y (2010) Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets 14:787–796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kandagaddala LD, Kang MJ, Chung BC, Patterson TA, Kwon OS (2012) Expression and activation of matrix metalloproteinase-9 and NADPH oxidase in tissues and plasma of experimental autoimmune encephalomyelitis in mice. Exp Toxicol Pathol 64:109–114

    Article  PubMed  CAS  Google Scholar 

  • Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58:253–263

    PubMed  Google Scholar 

  • Li L, Narayan K, Pak E, Pachner AR (2006) Intrathecal antibody production in a mouse model of Lyme neuroborreliosis. J Neuroimmunol 173:56–68

    Article  PubMed  CAS  Google Scholar 

  • Lipton HL (1975) Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun 11:1147–1155

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lipton HL, Dal Canto MC (1976) Theiler’s virus-induced demyelination: prevention by immunosuppression. Science 192:62–64

    Article  PubMed  CAS  Google Scholar 

  • Lorenzl S, Albers DS, LeWitt PA, Chirichigno JW, Hilgenberg SL, Cudkowicz ME, Beal MF (2003) Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J Neurol Sci 207:71–76

    Article  PubMed  CAS  Google Scholar 

  • Lorenzl S, Narr S, Angele B, Krell HW, Gregorio J, Kiaei M, Pfister HW, Beal MF (2006) The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice. Exp Neurol 200:166–171

    Article  PubMed  CAS  Google Scholar 

  • Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD (2003) Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 144:68–79

    Article  PubMed  CAS  Google Scholar 

  • Martinez NE, Karlsson F, Sato F, Kawai E, Omura S, Minagar A, Grisham MB, Tsunoda I (2014) Protective and detrimental roles for regulatory T cells in a viral model for multiple sclerosis. Brain Pathol

  • Mecha M, Carrillo-Salinas FJ, Mestre L, Feliu A, Guaza C (2013) Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog Neurobiol 101–102:46–64

    Article  PubMed  Google Scholar 

  • Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136

    Article  PubMed  CAS  Google Scholar 

  • Mogensen TH, Melchjorsen J, Larsen CS, Paludan SR (2010) Innate immune recognition and activation during HIV infection. Retrovirology 7:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray PD, Krivacic K, Chernosky A, Wei T, Ransohoff RM, Rodriguez M (2000) Biphasic and regionally-restricted chemokine expression in the central nervous system in the Theiler’s virus model of multiple sclerosis. J Neurovirol 6(Suppl 1):S44–S52

    PubMed  CAS  Google Scholar 

  • Olson JK, Girvin AM, Miller SD (2001) Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler’s virus. J Virol 75:9780–9789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924

    Article  PubMed  CAS  Google Scholar 

  • Olson JK, Miller SD (2009) The innate immune response affects the development of the autoimmune response in Theiler’s virus-induced demyelinating disease. J Immunol 182:5712–5722

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pachner AR, Brady J, Narayan K (2007a) Antibody-secreting cells in the central nervous system in an animal model of MS: phenotype, association with disability, and in vitro production of antibody. J Neuroimmunol 190:112–120

    Article  PubMed  CAS  Google Scholar 

  • Pachner AR, Li L, Lagunoff D (2011) Plasma cells in the central nervous system in the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 232:35–40

    Article  PubMed  CAS  Google Scholar 

  • Pachner AR, Li L, Narayan K (2007b) Intrathecal antibody production in an animal model of multiple sclerosis. J Neuroimmunol 185:57–63

    Article  PubMed  CAS  Google Scholar 

  • Raddatz BB, Hansmann F, Spitzbarth I, Kalkuhl A, Deschl U, Baumgartner W, Ulrich R (2014) Transcriptomic meta-analysis of multiple sclerosis and its experimental models. PLoS One 9:e86643

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards MH, Getts MT, Podojil JR, Jin YH, Kim BS, Miller SD (2011) Virus expanded regulatory T cells control disease severity in the Theiler’s virus mouse model of MS. J Autoimmun 36:142–154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  • Sato S, Reiner SL, Jensen MA, Roos RP (1997) Central nervous system cytokine mRNA expression following Theiler’s murine encephalomyelitis virus infection. J Neuroimmunol 76:213–223

    Article  PubMed  CAS  Google Scholar 

  • Sorgeloos F, Jha BK, Silverman RH, Michiels T (2013) Evasion of antiviral innate immunity by Theiler’s virus L* protein through direct inhibition of RNase L. PLoS Pathog 9:e1003474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stavrou S, Feng Z, Lemon SM, Roos RP (2010) Different strains of Theiler’s murine encephalomyelitis virus antagonize different sites in the type I interferon pathway. J Virol 84:9181–9189

    Article  PubMed  PubMed Central  Google Scholar 

  • Stomrud E, Bjorkqvist M, Janciauskiene S, Minthon L, Hansson O (2010) Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer’s disease. Alzheimers Res Ther 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsunoda I, Iwasaki Y, Terunuma H, Sako K, Ohara Y (1996) A comparative study of acute and chronic diseases induced by two subgroups of Theiler’s murine encephalomyelitis virus. Acta Neuropathol 91:595–602

    Article  PubMed  CAS  Google Scholar 

  • Ulrich R, Kalkuhl A, Deschl U, Baumgartner W (2010) Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434–448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138:30–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Center for Comparative Medicine and Research (CCMR) at Dartmouth for their expert care of the mice used for this study. The authors also acknowledge Joanna Hamilton and Carol Ringelberg for their technical assistance with microarray experiments and analyses, as well as Emily Clough for her excellent administrative support.

Conflict of interest

FG has received research support from Biogen Idec. ARP has received personal compensation for activities with Biogen Idec, EMD Serono, Novartis, Hoffman-LaRoche, Schering AG, NovoNordisk, Biomonitor, and Teva Marion as a consultant. ARP has also received research support from Hoffman-LaRoche, Biogen Idec, and Sanofi-Aventis. LL is currently an employee of GenScript USA Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Gilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilli, F., Li, L. & Pachner, A.R. The immune response in the CNS in Theiler’s virus induced demyelinating disease switches from an early adaptive response to a chronic innate-like response. J. Neurovirol. 22, 66–79 (2016). https://doi.org/10.1007/s13365-015-0369-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0369-4

Keywords

Navigation