Skip to main content
Log in

Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

At least six microRNAs (miRNAs) appear to be encoded by the latency-associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is anti-sense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild-type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency/reactivation cycle of a LAT-negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant-induced reactivation model of HSV-1 compared with its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared with its parental wild-type (wt) virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared with its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed M, Lock M, Miller CG, Fraser NW (2002) Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76:717–729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allen SJ, Hamrah P, Gate D, Mott KR, Mantopoulos D, Zheng L, Town T, Jones C, von Andrian UH, Freeman GJ, Sharpe AH, BenMohamed L, Ahmed R, Wechsler SL, Ghiasi H (2011) The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1. J Virol 85:4184–4197, PMC:3126262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allen SJ, Rhode-Kurnow A, Mott KR, Jiang X, Carpenter D, Rodriguez-Barbosa JI, Jones C, Wechsler SL, Ware CF, Ghiasi H (2014) Interactions between herpesvirus entry mediator (TNFRSF14) and latency-associated transcript during herpes simplex virus 1 latency. J Virol 88:1961–1971, PMC:3911542

    Article  PubMed  PubMed Central  Google Scholar 

  • Block TM, Deshmane S, Masonis J, Maggioncalda J, Valyi-Nagi T, Fraser NW (1993) An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology 192:618–630

    Article  PubMed  CAS  Google Scholar 

  • Bloom DC, Devi-Rao GB, Hill JM, Stevens JG, Wagner EK (1994) Molecular analysis of herpes simplex virus type 1 during epinephrine-induced reactivation of latently infected rabbits in vivo. J Virol 68:1283–1292

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen SH, Kramer MF, Schaffer PA, Coen DM (1997) A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71:5878–5884

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chentoufi AA, Kritzer E, Tran MV, Dasgupta G, Lim CH, Yu DC, Afifi RE, Jiang X, Carpenter D, Osorio N, Hsiang C, Nesburn AB, Wechsler SL, BenMohamed L (2011) The herpes simplex virus 1 latency-associated transcript promotes functional exhaustion of virus-specific CD8+ T cells in latently infected trigeminal ganglia: a novel immune evasion mechanism. J Virol 85:9127–9138, PMC:3165846

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chentoufi AA, Dervillez X, Dasgupta G, Nguyen C, Kabbara KW, Jiang X, Nesburn AB, Wechsler SL, Benmohamed L (2012) The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells. Viral Immunol 25(3):204–215

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colgin MA, Smith RL, Wilcox CL (2001) Inducible cyclic AMP early repressor produces reactivation of latent herpes simplex virus type 1 in neurons in vitro. J Virol 75:2912–2920, PMC:115917

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Devi-Rao GB, Bloom DC, Stevens JG, Wagner EK (1994) Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. J Virol 68:1271–1282

    PubMed  CAS  PubMed Central  Google Scholar 

  • Farrell MJ, Dobson AT, Feldman LT (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A 88:790–794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC (2013) Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87:6589–6603, PMC:3676078

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garber DA, Schaffer PA, Knipe DM (1997) A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71:5885–5893

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goins WF, Sternberg LR, Croen KD, Krause PR, Hendricks RL, Fink DJ, Straus SE, Levine M, Glorioso JC (1994) A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J Virol 68:2239–2252

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gordon YJ, Romanowski EG, Araullo-Cruz T, Kinchington PR (1995) The proportion of trigeminal ganglionic neurons expressing herpes simplex virus type 1 latency-associated transcripts correlates to reactivation in the New Zealand rabbit ocular model. Graefes Arch Clin Exp Ophthalmol 233:649–654

    Article  PubMed  CAS  Google Scholar 

  • Herpetic Eye Disease Study Group (1998) Acyclovir for the prevention of recurrent herpes simplex virus eye disease. Herpetic Eye Disease Study Group [see comments]. N Engl J Med 339:300–306

    Article  Google Scholar 

  • Hill JM, Sedarati F, Javier RT, Wagner EK, Stevens JG (1990) Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174:117–125

    Article  PubMed  CAS  Google Scholar 

  • Hjalmarsson A, Blomqvist P, Skoldenberg B (2007) Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin Infect Dis 45:875–880

    Article  PubMed  Google Scholar 

  • Inman M, Perng GC, Henderson G, Ghiasi H, Nesburn AB, Wechsler SL, Jones C (2001) Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75:3636–3646, PMC:114855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang X, Chentoufi AA, Hsiang C, Carpenter D, Osorio N, BenMohamed L, Fraser NW, Jones C, Wechsler SL (2011) The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85:2325–2332, PMC:3067767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang X, Brown D, Osorio N, Hsiang C, Li L, Chan L, BenMohamed L, Wechsler SL (2015) A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation. J Neurovirol 21(2):199–209

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Perng GC, Mott KR, Osorio N, Naito J, Brick DJ, Carpenter D, Jones C, Wechsler SL (2005) A herpes simplex virus type 1 mutant expressing a baculovirus inhibitor of apoptosis gene in place of latency-associated transcript has a wild-type reactivation phenotype in the mouse. J Virol 79:12286–12295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jin L, Perng GC, Carpenter D, Mott KR, Osorio N, Naito J, Brick DJ, Jones C, Wechsler SL (2007) Reactivation phenotype in rabbits of a herpes simplex virus type 1 mutant containing an unrelated antiapoptosis gene in place of latency-associated transcript. J Neurovirol 13:78–84

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Carpenter D, Moerdyk-Schauwecker M, Vanarsdall AL, Osorio N, Hsiang C, Jones C, Wechsler SL (2008) Cellular FLIP can substitute for the herpes simplex virus type 1 latency-associated transcript gene to support a wild-type virus reactivation phenotype in mice. J Neurovirol 14:389–400, PMC:2980827

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kang W, Mukerjee R, Fraser NW (2003) Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology 312:233–244

    Article  PubMed  CAS  Google Scholar 

  • Leib DA, Bogard CL, Kosz-Vnenchak M, Hicks KA, Coen DM, Knipe DM, Schaffer PA (1989) A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63:2893–2900

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nesburn AB (1983) Report of the corneal disease panel: vision research: a national plan 1983–1987. Vol II, Part III., vol. II, part III. C.V. Mosby Co., St. Louis

  • Nicosia M, Deshmane SL, Zabolotny JM, Valyi-Nagy T, Fraser NW (1993) Herpes simplex virus type 1 latency-associated transcript (LAT) promoter deletion mutants can express a 2-kilobase transcript mapping to the LAT region. J Virol 67:7276–7283

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pan D, Flores O, Umbach JL, Pesola JM, Bentley P, Rosato PC, Leib DA, Cullen BR, Coen DM (2014) A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 15:446–456, PMC:4142646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peng W, Jin L, Henderson G, Perng GC, Brick DJ, Nesburn AB, Wechsler SL, Jones C (2004) Mapping herpes simplex virus type 1 latency-associated transcript sequences that protect from apoptosis mediated by a plasmid expressing caspase-8. J Neurovirol 10:260–265

    Article  PubMed  CAS  Google Scholar 

  • Peng W, Henderson G, Inman M, BenMohamed L, Perng GC, Wechsler SL, Jones C (2005) The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal Ganglia of acutely infected mice. J Virol 79:6162–6171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perng GC, Dunkel EC, Geary PA, Slanina SM, Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL (1994) The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68:8045–8055

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perng GC, Chokephaibulkit K, Thompson RL, Sawtell NM, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL (1996a) The region of the herpes simplex virus type 1 LAT gene that is colinear with the ICP34.5 gene is not involved in spontaneous reactivation. J Virol 70:282–291

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perng GC, Ghiasi H, Slanina SM, Nesburn AB, Wechsler SL (1996b) The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol 70:976–984

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perng GC, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL (1996c) A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J Virol 70:2014–2018

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perng GC, Slanina SM, Yukht A, Ghiasi H, Nesburn AB, Wechsler SL (2000a) The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J Virol 74:1885–1891

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perng G, Jones C, Ciacci-Zanella H, Henderson G, Yukht A, Slanina S, Hofman F, Ghiasi H, Nesburn A, Wechsler S (2000b) Virus induced neuronal apoptosis blocked by the herpes simplex virus latency associated transcript (LAT). Science 287:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Perng GC, Esmaili D, Slanina SM, Yukht A, Ghiasi H, Osorio N, Mott KR, Maguen B, Jin L, Nesburn AB, Wechsler SL (2001a) Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymmetric effects on virulence in mice compared with rabbits. J Virol 75:9018–9028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perng GC, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL (2001b) The effect of latency-associated transcript on the herpes simplex virus type 1 latency-reactivation phenotype is mouse strain-dependent. J Gen Virol 82:1117–1122

    Article  PubMed  CAS  Google Scholar 

  • Perng GC, Maguen B, Jin L, Mott KR, Osorio N, Slanina SM, Yukht A, Ghiasi H, Nesburn AB, Inman M, Henderson G, Jones C, Wechsler SL (2002a) A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. J Virol 76:1224–1235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perng GC, Mott KR, Osorio N, Yukht A, Salina S, Nguyen QH, Nesburn AB, Wechsler SL (2002b) Herpes simplex virus type 1 mutants containing the KOS strain ICP34.5 gene in place of the McKrae ICP34.5 gene have McKrae-like spontaneous reactivation but non-McKrae-like virulence. J Gen Virol 83:2933–2942

    Article  PubMed  CAS  Google Scholar 

  • Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR, Wechsler SL (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61:3820–3826

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sacks WR, Schaffer PA (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J Virol 61:829–839

    PubMed  CAS  PubMed Central  Google Scholar 

  • Samoto K, Ehtesham M, Perng GC, Hashizume K, Wechsler SL, Nesburn AB, Black KL, Yu JS (2002) A herpes simplex virus type 1 mutant with gamma 34.5 and LAT deletions effectively oncolyses human U87 glioblastomas in nude mice. Neurosurgery 50:599–605, discussion 605–596

    PubMed  Google Scholar 

  • Sawtell NM, Thompson RL (1992) Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol 66:2157–2169

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith RE, McDonald HR, Nesburn AB, Minckler DS (1980) Penetrating keratoplasty: changing indications, 1947 to 1978. Arch Ophthalmol 98:1226–1229

    Article  PubMed  CAS  Google Scholar 

  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Sawtell NM (1997) The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71:5432–5440

    PubMed  CAS  PubMed Central  Google Scholar 

  • Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    PubMed  CAS  PubMed Central  Google Scholar 

  • Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83:10677–10683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wagner EK, Devi-Rao G, Feldman LT, Dobson AT, Zhang YF, Flanagan WM, Stevens JG (1988) Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol 62:1194–1202

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wechsler SL, Nesburn AB, Watson R, Slanina SM, Ghiasi H (1988) Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames. J Virol 62:4051–4058

    PubMed  CAS  PubMed Central  Google Scholar 

  • Whitley RJ (1997) Herpes simplex virus. In: Scheld W, Whitley RJ, Durack D (eds) Infections of the central nervous system, 2nd edn. Lippincott-Raven, Philadelphia, pp 73–89

    Google Scholar 

Download references

Acknowledgments

This study was supported by Public Health Service NIH grants 1R56AI098985, 1R56AI093133, R01EY013191, RO1EY019896, RO1EY14900, and EY024618 and The Discovery Center for Eye Research. We thank Dr. Nigel Fraser for reading this manuscript and providing helpful comments.

Conflict of interest

All of the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Wechsler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Brown, D., Osorio, N. et al. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2. J. Neurovirol. 22, 38–49 (2016). https://doi.org/10.1007/s13365-015-0362-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0362-y

Keywords

Navigation