Skip to main content
Log in

Relationships among North American deer based on mitochondrial DNA and ultraconserved elements, with comments on mito-nuclear discordance

  • ORIGINAL PAPER
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Despite their economic, cultural, and ecological significance, the phylogenetic relationships among North American deer remain uncertain, due in part to discordance between phylogenies built from mitochondrial DNA (mtDNA) and nuclear markers. Nuclear markers resolve mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) as reciprocally monophyletic, but mtDNA results in a mixed topology. These two genomic regions have heretofore been analyzed in isolation. We compared phylogenies built from mtDNA cytochrome b and single-nucleotide polymorphisms (SNPs) from the mitogenome and nuclear (ultraconserved elements, UCEs) markers from the same individuals to investigate mito-nuclear discordance within and between taxa in the genus Odocoileus. A Cyt b tree shows haplotype sharing between O. hemionus and O. virginianus. Mitochondrial DNA SNPs separated only O. hemionus and O. virginianus, whereas nuclear SNPs separated O. hemionus, O. virginianus, and the distinct subspecies Coues deer (O. v. couesi), Key deer (O. v. clavium), and Sitka black-tailed deer (O. h. sitkensis) plus Columbian black-tailed deer (O. h. columbianus). We found less support for O. h. columbianus as a distinct taxon, which had signs of introgression with nominate O. h. hemionus. The well-established paraphyly of mtDNA haplotypes from O. virginianus and O. hemionus is confirmed with comparisons of mtDNA and nuclear-encoded SNPs from the same individuals. Our attempts to explain mito-nuclear discordance among Odocoileus deer remain inconclusive. We suspect incomplete lineage sorting of a recent evolutionary split may explain this pattern, although mtDNA capture via ancient hybridization is also a possibility. Niche models suggested allopatric refugia at the Last Glacial Maximum for these taxa except for a parapatric or sympatric distribution estimated for O. virginianus and O. v. clavium and O. hemionus and O. h. columbianus, the latter of which might explain the modern hybrid zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are in GenBank and will be deposited in Dryad (UCE).

Code availability

All code and corresponding data used to produce presented results are available in the article and Online Resources.

References

  • Bradley RD, Ammerman LK, Baker RJ, Bradley LC, Cook JA, Dowler RC, Jones C, Schmidly DJ, Stangl FB, Van Den Bussche RA, Würsig BG (2014) Revised checklist of North American mammals north of Mexico. Museum of Texas Tech University, Lubbock, TX

  • Bradley RD, Bryant FC, Bradley LC, Haynie ML, Baker RJ (2003) Implications of hybridization between white-tailed deer and mule deer. Southwest Nat 48:454–660

  • Caire W, Loucks LS, Haynie ML, Coyner BS, Braun JK (2019) Updated and revised checklist of the mammals of Oklahoma. In Proc OK Acad Sci 99:1–6

    Google Scholar 

  • Carr SM, Ballinger SW, Derr JN, Blankenship LH, Bickham JW (1986) Mitochondrial DNA analysis of hybridization between sympatric white-tailed deer and mule deer in west Texas. Proc Nat Acad Sci 83:9576–9580

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cathey JC, Bickham JW, Patton JC (1998) Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer. Evolution 52:1224–1229

    Article  PubMed  Google Scholar 

  • Chafin TK, Zbinden ZD, Douglas MR, Martin BT, Middaugh CR, Gray MC, Ballard JR, Douglas ME (2021) Spatial population genetics in heavily managed species: separating patterns of historical translocation from contemporary gene flow in white-tailed deer. Evol Appl. https://doi.org/10.1111/eva.13233

    Article  PubMed  PubMed Central  Google Scholar 

  • Chifman J, Kubatko L (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combe FJ, Jaster L, Ricketts A, Haukos D, Hope AG (2022) Population genomics of free-ranging Great Plains white-tailed and mule deer reflects a long history of interspecific hybridization. Evol Appl 15:111–131

    Article  CAS  PubMed  Google Scholar 

  • Cronin MA, Rincon G, Meredith RW, MacNeil MD, Islas-Trejo A, Cánovas A, Medrano JF (2014) Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences. J Hered 105:312–323

    Article  PubMed  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudık M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Diver Dist 17:43–57

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Bio 61:717–726

    Article  Google Scholar 

  • Gutiérrez EE, Helgen KM, McDonough MM, Bauer F, Hawkins MT, Escobedo-Morales LA, Patterson BD, Maldonado JE (2017) A gene-tree test of the traditional taxonomy of American deer: the importance of voucher specimens, geographic data, and dense sampling. ZooKeys 697:87–131

    Article  Google Scholar 

  • Hailer F (2008) Leonard JA (2008) Hybridization among three native North American Canis species in a region of natural sympatry. PLoS ONE 3(10):e3333

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Heckeberg NS (2020) The systematics of the Cervidae: a total evidence approach. PeerJ 8:e8114

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffelfinger J (2011) Taxonomy, evolutionary history, and distribution. Pp. 3–42, in Biology and Management of White-tailed Deer, D. G. Hewitt, ed. CRC Press

  • Heffelfinger JR, Latch EK (2023) Origin, classification, and distribution. In: Heffelfinger JR, Krausman PR (eds) Ecology and management of black-tailed and mule deer in North America. CRC Press

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Mathur P (2012) DIVA-GIS. Version. 7.5. http://www.diva-gis.org/

  • Hoang DT, Chernomor O, Haeseler AV, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

  • Hopken MW, Lum TM, Meyers PM, Piaggio AJ (2015) Molecular assessment of translocation and management of an endangered subspecies of white-tailed deer (Odocoileus virginianus). Cons Genet 16:635–647

    Article  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1–5

    Article  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Meth 14:587–589

    Article  CAS  Google Scholar 

  • Latch EK, and Heffelfinger JR (2022) Genetics informs meaningful intraspecific taxonomy: the black-tailed and mule deer complex. Anim Prod Sci

  • Latch EK, Heffelfinger JR, Fike JA, Rhodes OE Jr (2009) Species-wide phylogeography of North American mule deer (Odocoileus hemionus): cryptic glacial refugia and postglacial recolonization. Mole Ecol 18:1730–1745

    Article  Google Scholar 

  • Latch EK, Kierepka EM, Heffelfinger JR, Rhodes OE Jr (2011) Hybrid swarm between divergent lineages of mule deer (Odocoileus hemionus). Mole Ecol 20:5265–5279

    Article  Google Scholar 

  • Latch EK, Reding DM, Heffelfinger JR, Alcalá-Galván CH, Rhodes OE Jr (2014) Range-wide analysis of genetic structure in a widespread, highly mobile species (Odocoileus hemionus) reveals the importance of historical biogeography. Mole Ecol 23:3171–3190

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinfor 25:1754–1760

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinfor 25:2078–2079

    Article  Google Scholar 

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology Evolution 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock K, Latch E, Rhodes OE (2004) Assessing losses of genetic diversity due to translocation: long-term case histories in Merriam’s turkey (Meleagris gallopavo merriami). Cons Genet 5:631

    Article  Google Scholar 

  • Nakamoto A, Harada M, Mitsuhashi R, Tsuchiya K, Kryukov AP, Shinohara A, Suzuki H (2021) Influence of quaternary environmental changes on mole populations inferred from mitochondrial sequences and evolutionary rate estimation. Zoo Let 7:1–11

    Google Scholar 

  • Peterson A (2001) Predicting species’ geographic distributions based on ecological niche modeling. The Condor 103:599–605

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton Univ. Press, Princeton, NJ

    Book  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

    Article  CAS  Google Scholar 

  • Ramírez-Pulido J, González-Ruiz N, Gardner AL, Arroyo-Cabrales J (2014) List of recent land mammals of Mexico. https://repository.si.edu/bitstream/handle/10088/33974/2014%20List%20of%20recent%20land%20mammals%20Mexico.pdf?sequence=1&isAllowed=y

  • Roca AL, O’Brien SJ (2005) Genomic inferences from Afrotheria and the evolution of elephants. Curr Opin Genet Devel 15:652–659

    Article  CAS  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP v6. DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Russell T, Cullingham C, Ball M, Pybus M, Coltman D (2021) Extent and direction of introgressive hybridization of mule and white-tailed deer in western Canada. Evol Appl 14:1914–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schummer ML, Simpson J, Shirkey B, Kucia SR, Lavretsky P, Tozer DC (2023) (2023) Population genetics and geographic origins of mallards harvested in northwestern Ohio. PLoS ONE 18(3):e0282874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247

    Article  CAS  PubMed  Google Scholar 

  • Smith WP (1991) Odocoileus virginianus. Mamm Sp 388:1–13

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinfor 30:1312–1313

    Article  CAS  Google Scholar 

  • Swofford DL (2023) PAUP*: phylogenetic analysis using PAUP, version 4.0a 169. https://paup.phylosolutions.com/

  • Vázquez-Miranda H, Zink RM (2020) Geographic distribution of chronic wasting disease resistant alleles in Nebraska, with comments on the evolution of resistance. J Fish Wildl Man 11:46–55

    Article  Google Scholar 

  • Villanova VL, Hughes PT, Hoffman EA (2017) Combining genetic structure and demographic analyses to estimate persistence in endangered Key deer (Odocoileus virginianus clavium). Cons Genet 18:1061–1076

    Article  Google Scholar 

  • Wascher M, Kubatko L (2020) Consistency of SVDquartets and maximum likelihood for coalescent-based species tree estimation. Syst Biol 70:33–48

    Article  Google Scholar 

  • Wright EA, Roberts EK, Platt RN, Bayouth JV, Conway WC, Bradley RD (2022) Mitochondrial capture and subsequent genetic divergence generates a novel haplogroup: evidence from ancient and ongoing hybridization in mule and white-tailed deer. J Mammal 103(3):723–736

    Article  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30:614–620

    Article  CAS  PubMed  Google Scholar 

  • Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mole Ecol 17:2107–2121

    Article  CAS  Google Scholar 

  • Zink RM, Najar N, Vázquez-Miranda H, Buchanan BL, Loy D, Brodersen BW (2020) Geographic variation in the PRNP gene and its promoter, and their relationship to chronic wasting disease in North American deer. Prion 14:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We received tissues from hunter-harvested deer in Nebraska via the Nebraska Game and Parks Commission, thanks to K. Decker, T. Nordeen, and J. J. Lusk. We received tissue loans from L. Olson (University of Alaska-Fairbanks), J. Heffelfinger (Arizona Game and Fish Department), and K. Watts (Florida Keys National Wildlife Refuge). We thank B. Buchanan, M. Girard, and M. Olson for lab assistance.

Funding

Nebraska Game and Parks Commission (w-113-r), Pope and Young Club (no grant number).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HV-M and RMZ; data curation: LBK; formal analysis: LBK, NN, and RMZ; funding acquisition: RMZ; investigation: LBK, RMZ, and HV-M; methodology: LBK and HV-M; project administration: RMZ; resources: RMZ; software: LBK; supervision: RMZ; validation: LBK, RMZ, and HV-M; visualization: HV-M, writing—original draft preparation: RMZ; writing—review and editing: LBK, NN, RMZ, and HV-M.

Corresponding author

Correspondence to Robert M. Zink.

Ethics declarations

Ethics approval

This study contains no studies of human participants or animals performed by any of the authors. This article is not in consideration for or published at any other journal.

Consent to participate

This study contains no human participants.

Consent for publication

No materials or figures have been published elsewhere.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Magdalena Niedziałkowska

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 845 KB)

Appendix

Appendix

Specimens and GenBank identifiers for Cyt b data (see also Gutierrez et al. 2017). OH = Odocoileus hemionus, OV = O. virginianus. Subspecies identifiers given if also in provided in GenBank (although taxonomy not verified). Geographic identifiers given if listed with GenBank entry. OH and OV from Nebraska are given in GenBank MN 390611–390813 and came from the following counties (OH: Arthur, Blaine, Boone, Box Butte, Brown, Cherry, Cheyenne, Custer, Dawes, Dawson, Dundy, Frontier, Furnas, Garden, Gosper, Grant, Greeley, Hayes, Hitchcock, Hold, Keith, Keya Paha, Kimball, Loup, Morrill, Red Willow, Scotts Bluff, Sheridan; OV: Otoe, York, Seward, Johnson, Pawnee, Richardson, Cass, Box Butte, Dawes, Cherry, Howard, Hall, Custer, Buffalo, Franklin, Kearney, Harlan, Garden, Valley, Loup; (Chemung Co.) and Minnesota (Washington Co.).

AF091630_OH; AY607035_OV; DQ379370_OV; DQ673136_OV; FJ188717_OH_AB; FJ188718_OH_AB; FJ188719_OH_AB; FJ188720_OH_AB; FJ188721_OH_AB; FJ188722_OH_AB; FJ188723_OH_AB; FJ188724_OH_AB; FJ188725_OH_AB; FJ188726_OH_AB_OR; FJ188727_OH_sitkensis_AK; FJ188728_OH_sitkensis_AK; FJ188729_OH_crooki_AZ; FJ188730_OH_crooki_AZ; FJ188731_OH_crooki_AZ; FJ188732_OH_crooki_AZ; FJ188733_OH_crooki_AZ; FJ188734_OH_crooki_AZ; FJ188735_OH_crooki_AZ; FJ188736_OH_crooki_AZ; FJ188737_OH_crooki_AZ; FJ188738_OH_crooki_AZ; FJ188739_OH_crooki_AZ; FJ188740_OH_crooki_AZ; FJ188741_OH_crooki_AZ; FJ188742_OH_hemionus_AZ; FJ188743_OH_hemionus_AZ; FJ188744_OH_hemionus_AZ; FJ188745_OH_hemionus_AZ; FJ188746_OH_hemionus_AZ; FJ188747_OH_hemionus_AZ; FJ188748_OH_hemionus_AZ; FJ188749_OH_eremicus_AZ; FJ188750_OH_fuliginatus; FJ188751_OH_fuliginatus; FJ188752_OH_fuliginatus; FJ188753_OH_peninsulae; FJ188754_OH_peninsulae; FJ188755_OH_peninsulae; FJ188756_OH_peninsulae; FJ188757_OH_peninsulae; FJ188758_OH_peninsulae; FJ188759_OH_columbianus; FJ188760_OH_columbianus; FJ188761_OH_columbianus; FJ188762_OH_hemionus_BC; FJ188763_OH_hemionus_BC; FJ188764_OH_hemionus_BC; FJ188765_OH_hemionus_BC; FJ188766_OH_columbianus_BC; FJ188767_OH_hemionus_BC; FJ188768_OH_hemionus_BC; FJ188769_OH_columbianus_BC_VI; FJ188770_OH_columbianus_BC_VI; FJ188771_OH_columbianus_BC_VI; FJ188772_OH_columbianus_BC_VI; FJ188773_OH_californicus_CA; FJ188774_OH_californicus_CA; FJ188775_OH_eremicus_CA; FJ188776_OH_inyoensis_CA; FJ188777_OH_inyoensis_CA; FJ188778_OH_inyoensis_CA; FJ188779_OH_inyoensis_CA; FJ188780_OH_californicus_CA; FJ188781_OH_californicus_CA; FJ188782_OH_californicus_CA; FJ188783_OH_californicus_CA; FJ188784_OH_californicus_CA; FJ188785_OH_californicus_CA; FJ188786_OH_californicus_CA; FJ188787_OH_fuliginatus_CA; FJ188788_OH_fuliginatus_CA; FJ188789_OH_fuliginatus_CA; FJ188790_OH_fuliginatus_CA; FJ188791_OH_fuliginatus_CA; FJ188792_OH_fuliginatus_CA_; FJ188793_OH_californicus_CA; FJ188794_OH_californicus_CA; FJ188795_OH_californicus_CA; FJ188796_OH_californicus_CA; FJ188797_OH_californicus_CA; FJ188798_OH_californicus_CA; FJ188799_OH_californicus_CA; FJ188800_OH_californicus_CA; FJ188801_OH_columbianus_CA; FJ188802_OH_columbianus_CA; FJ188803_OH_columbianus_CA; FJ188804_OH_columbianus_CA; FJ188805_OH_columbianus_CA; FJ188806_OH_columbianus_CA; FJ188807_OH_columbianus_CA; FJ188808_OH_crooki; FJ188809_OH_crooki; FJ188810_OH_crooki; FJ188811_OH_crooki; FJ188812_OH_crooki; FJ188813_OH_hemionus_CO; FJ188814_OH_hemionus_CO; FJ188815_OH_hemionus_CO; FJ188816_OH_hemionus_CO; FJ188817_OH_hemionus_CO; FJ188818_OH_crooki_CU; FJ188819_OH_hemionus_ID; FJ188820_OH_hemionus_ID; FJ188821_OH_hemionus_ID; FJ188822_OH_hemionus_ID; FJ188823_OH_hemionus; FJ188824_OH_hemionus_KS; FJ188825_OH_hemionus_KS; FJ188826_OH_hemionus_KS; FJ188827_OH_hemionus_KS; FJ188828_OH_hemionus_KS; FJ188829_OH_hemionus_MT; FJ188830_OH_hemionus_MT; FJ188831_OH_hemionus_MT; FJ188832_OH_hemionus_MT7; FJ188833_OH_hemionus_MT2; FJ188834_OH_hemionus_ND2; FJ188835_OH_hemionus_ND; FJ188836_OH_hemionus_ND; FJ188837_OH_hemionus_NE; FJ188838_OH_hemionus_NE; FJ188839_OH_hemionus_NE1; FJ188840_OH_crooki_NM_02; FJ188841_OH_crooki_NM; FJ188842_OH_crooki_NM; FJ188843_OH_hemionus_NM; FJ188844_OH_hemionus_NM; FJ188845_OH_hemionus_NM; FJ188846_OH_hemionus_NM; FJ188847_OH_hemionus_NV; FJ188848_OH_hemionus_NV; FJ188849_OH_hemionus_NV; FJ188850_OH_hemionus_NV; FJ188851_OH_columbianus_OR; FJ188852_OH_columbianus_OR; FJ188853_OH_columbianus_OR; FJ188854_OH_columbianus_OR; FJ188855_OH_columbianus_OR; FJ188856_OH_hemionus_OR; FJ188857_OH_hemionus_OR; FJ188858_OH_hemionus_OR; FJ188859_OH_columbianus_OR; FJ188860_OH_columbianus_OR; FJ188861_OH_columbianus_OR; FJ188862_OH_columbianus_OR; FJ188863_OH_columbianus_OR; FJ188864_OH_columbianus_OR; FJ188865_OH_columbianus_OR; FJ188866_OH_columbianus_OR; FJ188867_OH_columbianus_OR; FJ188868_OH_columbianus_OR; FJ188869_OH_columbianus_OR; FJ188870_OH_columbianus_OR; FJ188871_OH_columbianus_OR; FJ188872_OH_columbianus_OR; FJ188873_OH_columbianus_OR; FJ188874_OH_columbianus_OR; FJ188875_OH_columbianus_OR; FJ188876_OH_columbianus_OR; FJ188877_OH_sitkensis; FJ188878_OH_sitkensis; FJ188879_OH_sitkensis; FJ188880_OH_sitkensis; FJ188881_OH_eremicus; FJ188882_OH_eremicus; FJ188883_OH_sheldoni; FJ188884_OH_sheldoni; FJ188885_OH_crooki_TX; FJ188886_OH_crooki_TX; FJ188887_OH_crooki_TX; FJ188888_OH_crooki_TX; FJ188889_OH_hemionus_UT; FJ188890_OH_hemionus_UT; FJ188891_OH_hemionus_WA; FJ188892_OH_columbianus_WA; FJ188893_OH_columbianus_WA; FJ188894_OH_columbianus_WA; FJ188895_OH_columbianus_WA; FJ188896_OH_hemionus_WY; FJ188897_OH_hemionus_WY; FJ188898_OH_hemionus_WY; FJ188899_OH_hemionus_YK; FJ188900_OH_hemionus_YK; HM222707_OH; JN632670_OH; JN632671_OV; JN632672_OV; JN632673_OV; KM612271_OVver; KM612272_OVyuc; KM612273_OVtex; KM612274_OVsin; KM612275_; KM612276_OV; KM612277_OV; KM612278_OV; KM612279_OV; KT877248_OV_clavium; KT877249_OV_clavium; KT877250_OV_clavium; KT877251_OV_clavium; KT877252_OV_clavium; KT877253_OV_clavium; KT877254_OV_clavium; KT877255_OV_clavium; KT877256_OV_clavium; KT877257_OV_clavium; KT877258_OV_clavium; KT877259_OV_clavium; KT877260_OV_clavium; KT877261_OV_clavium; KT877262_OV_clavium; KT877263_OV_clavium; KT877264_OV_clavium; KT877265_OV_clavium; KT877266_OV_clavium; KT877267_OV_clavium; KT877268_OV_clavium; KT877269_OV_clavium; KT877270_OV_clavium; KT877271_OV_clavium; KT877272_OV_clavium; KT877273_OV_clavium; KT877274_OV_clavium; KT877275_OV_clavium; KT877276_OV_clavium; KT877277_OV_clavium; KT877278_OV_clavium; KT877279_OV_clavium; KT877280_OV_clavium; KT877281_OV_clavium; KT877282_OV; KT877283_OV; KT877284_OV; KT877285_OV; KT877286_OV; KT877287_OV; KT877288_OV; KT877289_OV; KT877290_OV; KT877291_OV; KT877292_OV; KT877293_OV; KT877294_OV; KT877295_OV; KT877296_OV; KT877297_OV; KT877298_OV; KT877299_OV; KT877300_OV; KT877301_OV; KT877302_OV; KT877303_OV; KT877304_OV; KT877305_OV; KT877306_OV; KT877307_OV; KT877308_OV; KT877309_OV; KT877310_OV; KT877311_OV; KT877312_OV; KT877313_OV; KT877314_OV; KT877315_OV; KT877316_OV; KT877317_OV; KT877318_OV; KT877319_OV5; KT877320_OV; KT877321_OV; KT877322_OV; KT877323_OV; KT877324_OV; KT877325_OV; KT877326_OV; KT877327_OV; KT877328_OV; KT877329_OV; KT877330_OV; KT877331_OV; KT877332_OV; KT877333_OV; KT877334_OV; KT877335_OV; KT877336_OV; KT877337_OV; KT877338_OV; KT877339_OV; KT877340_OV; KT877341_OV; KT877342_OV; KT877343_OV; KT877344_OV; NC_020729_OH; AJ000029_Rangifer; MN390611-390813 (samples from Nebraska, Minnesota and New York).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klicka, L.B., Najar, N., Vázquez-Miranda, H. et al. Relationships among North American deer based on mitochondrial DNA and ultraconserved elements, with comments on mito-nuclear discordance. Mamm Res 69, 245–255 (2024). https://doi.org/10.1007/s13364-024-00739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-024-00739-0

Keywords

Navigation