Skip to main content
Log in

Chromosome variability and evolution in rodents of the tribe Abrotrichini (Rodentia, Cricetidae, Sigmodontinae)

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Rodents are a very diverse group with large chromosome variability. One of the most species rich linage in the Neotropics is the Sigmodontinae. Among them, the tribe Abrotrichini was recently defined and its taxonomy and phylogeny were mostly elucidated through molecular and morphological evidence. Meanwhile, chromosome data were only secondarily used because of fragmentary information. In this contribution, we conduct a chromosome characterization of Abrothrix hirta, A. olivacea, A. andina, and Paynomys macronyx, review the cytogenetic background of the tribe, and contrast it with molecular data. Chromosomes were analyzed by conventional and differential techniques. All Abrothrix species presented 2n = 52/FNa = 56, with a high similarity in the banding patterns reflecting a conserved karyotype, which does not coincide with its high molecular variability. In turn, P. macronyx have 2n = 54/FNa = 58–59, varying due to a heteromorphic pair of autosomes. In addition, in this last species, different morphologies of the X chromosome and the presence of B chromosomes were detected. Heterochromatin was involved in these variants. The telomeric probe in P. macronyx marks terminal regions of all chromosomes. B chromosomes generated strong telomeric signals. The Ag-NORs banding revealed the same patterns in Abrothrix and Paynomys. Cytogenetic data support phylogenetic relationships previously proposed and suggest that the specious genus Abrothrix could have retained the ancestral karyotype of the subfamily. In the tribe, the relatively conserved chromosome complement contrasts with its high molecular variability. This indicates decoupling between the rates of chromosomal and molecular divergence, as observed in other rodent lineages. In abrotrichines, chromosome evolution was slower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662

    PubMed  PubMed Central  Google Scholar 

  • Bianchi NO, Reig A, Molina OJ, Dulout FN (1971) Cytogenetics of the South American akodont rodents (Cricetidae). I A progress report of Argentinian and Venezuelan forms. Evolution 25:724–736

    PubMed  CAS  Google Scholar 

  • Bonvicino CR, D’Andrea PS, Cerqueira R, Seuánez HN (1996) The chromosomes of Nectomys (Rodentia, Cricetidae) with 2n=52, 2n=56, and interspecific hybrids (2n = 54). Cytogenet Cell Genet 73:190–193

    PubMed  CAS  Google Scholar 

  • Buschiazzo LM, Caraballo DA, Cálcena E, Longarzo ML, Labaroni CA, Ferro JM, Rossi MS, Bolzán AD, Lanzone C (2018) Integrative analysis of chromosome banding, telomere localization and molecular genetics in the highly variable Ctenomys of the Corrientes group (Rodentia; Ctenomyidae). Genetica 146:403–414

    PubMed  CAS  Google Scholar 

  • Camacho JPM, Sharbel TF, Beukeboom LW (2000) B chromosome evolution. Phil Trans Royal Sc B: Biol Sc 355:163–178

    CAS  Google Scholar 

  • Cañón C, Mir D, Pardiñas UFJ, Lessa EP, D’Elía G (2014) A multilocus perspective on the phylogenetic relationships and diversification of rodents of the tribe Abrotrichini (Cricetidae: Sigmodontinae). Zool Sc 43:443–454

    Google Scholar 

  • D’Elía G (2003) Phylogenetics of Sigmodontinae (Rodentia, Muroidea, Cricetidae), with special reference to the Akodon group, and with additional comments on historical biogeography. Cladistics 19:307–323

    Google Scholar 

  • D’Elía G, Ojeda A, Mondaca F, Gallardo MH (2006) New data of the long-clawed mouse Pearsonomys annectens (Cricetidae, Sigmodontinae) and additional comments on the distinctiveness of Pearsonomys. Mamm Biol 71:39–51

    Google Scholar 

  • Evans EP, Breckon G, Ford CE (1964) An air-drying method for meiotic preparations from mammalian testes. Cytogenetics 3:289–294

    PubMed  CAS  Google Scholar 

  • Fagundes V, Camacho J, Yonenaga-Yassuda Y (2004) Are the dot-like chromosomes in Trinomys iheringi (Rodentia, Echimyidae) B chromosomes? Cytogenet Genome Res 106:159–164

    PubMed  CAS  Google Scholar 

  • Feijoo M, D’Elía G, Pardiñas UFJ, Lessa EP (2010) Systematics of the southern Patagonian-Fueguian endemic Abrothrix lanosus (Rodentia: Sigmodontinae): phylogenetic position, karyotypic and morphological data. Mamm Biol 75:122–137

    Google Scholar 

  • Ford CE, Hamerton JL (1956) A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. St Technol 31:247–251

    CAS  Google Scholar 

  • Fredga K (1970) Unusual sex chromosome inheritance in mammals. Phil Trans Royal Sc B: Biol Sc 259:15–36

    CAS  Google Scholar 

  • Fredga K (1988) Aberrant chromosomal sex-determining mechanisms in mammals, with special references to species with XY females. Phil Trans Royal Sc B: Biol Sci 322:83–95

    CAS  Google Scholar 

  • Gallardo MH (1982) Chromosomal homology in southern Akodon. Experientia 38:1485–1487

    PubMed  CAS  Google Scholar 

  • Henson DD, Bradley RD (2009) Molecular systematics of the genus Sigmodon: results from mitochondrial and nuclear gene sequences. Can J Zool 87:211–220

    PubMed  PubMed Central  CAS  Google Scholar 

  • Howell WN, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a one step method. Experientia 36:1014–1015

    PubMed  CAS  Google Scholar 

  • Karamysheva T, Andreenkova O, Bochkaerev M, Borissov Y, Bogdanchikova V, Borodin V, Rubtsov V (2002) B chromosomes of korean field mouse Apodemus peninsulae (Rodentia, Murinae) analysed by microdissection and FISH. Cytogenet Genome Res 96:154–160

    PubMed  CAS  Google Scholar 

  • Kartavtseva IV, Roslik GV (2004) A complex B chromosome system in the Korean field mouse Apodemus peninsulae. Cytogenet Genome Res 106:271–278

    PubMed  CAS  Google Scholar 

  • Labaroni C, Malleret M, Novillo A, Ojeda A, Rodriguez D, Martí DA, Lanzone C (2014) Karyotypic variation in the Andean rodent Phyllotis xanthopygus (Waterhouse, 1837) (Rodentia, Cricetidae, Sigmodontinae). Comp Cytogenet 8:369–381

    PubMed  PubMed Central  Google Scholar 

  • Lanzone C, Labaroni CA, Suárez N, Rodríguez D, Herrera ML, Bolzán AD (2015) Distribution of telomeric sequences (TTAGGG)n in rearranged chromosomes of phyllotine rodents (Cricetidae, Sigmodontinae). Cytogenet Genome Research 147:247–252

    Google Scholar 

  • Lanzone C, Cardozo D, Sánchez DM, Martí DA, Ojeda RA (2016) Chromosomal variability and evolution in the tribe Phyllotini (Rodentia, Cricetidae, Sigmodontinae). Mammal Res 61:373–382

    Google Scholar 

  • Lanzone C, Labaroni CA, Formoso A, Buschiazzo LM, Da Rosa F, Teta P (2018) Diversidad, sistemática y conservación de roedores en el extremo sudoccidental del Bosque Atlántico Interior. Rev Mus Arg Cs Nat 20:151–164

    Google Scholar 

  • Liascovich RC, Bárquez RM, Reig OA (1989) A karyological and morphological reassessment of Akodon (Abrotrix) illuteus Thomas. J Mammal 70:386–391

    Google Scholar 

  • Machado LF, Leite YLR, Christoff AU, Giugliano LG (2014) Phylogeny and biogeography of tetralophodont rodents of the tribe Oryzomyini (Cricetidae: Sigmodontinae). Zool Sc 43:119–130

    Google Scholar 

  • Maia V, Yonenaga-Yassuda Y, Freitas JRO, Kasahara S, Suñé-Mattevi M, Oliveira LF, Galindo MA, Sbalqueiro IJ (1984) Supernumerary chromosomes in Nectomys squamipes (Cricetidae-Rodentia). Genetica 63:121–128

    Google Scholar 

  • Ojeda AA, D’Elía G, Ojeda R (2005) Taxonomía alfa de Chelemys y Euneomys (Rodentia, Cricetidae): el número diploide de ejemplares topotípicos de C. macronyx y E. mordax. Mastozool Neotrop 12:79–82

    Google Scholar 

  • Palestis B, Burt A, Jones R, Trivers R (2004) B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive. Proceedings of the Royal Society of London. Series B, Biol Sc 271:22–24

    Google Scholar 

  • Parada A, Pardiñas UFJ, Salazar-Bravo J, D’Elía G, Palma RE (2013) Dating an impressive Neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Mol Phylogenet Evol 66:960–968

    PubMed  Google Scholar 

  • Paresque R, Silva M, Yonenaga-Yassuda Y, Fagundes V (2007) Karyological geographic variation of Oligoryzomys nigripes Olfers, 1818 (Rodentia, Cricetidae) from Brazil. Genet Mol Biol 30:43–53

    Google Scholar 

  • Patterson BD, Gallardo MH, Freas KE (1984) Systematics of mice of the subgenus Akodon (Rodentia:Cricetidae) in southern South America, with the description of a new species. Field Zool 23:1–16

    Google Scholar 

  • Patton JL (1967) Chromosome studies in certain pocket mouse, genus Perognathus (Rodentia, Heteromyidae). J Mammal 48:27–37

    PubMed  CAS  Google Scholar 

  • Patton JL, Pardiñas UFJ, D’Elía G (2015) Mammals of South America. 2 Rodents. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Pearson OP (1984) Taxonomy and natural history of some fossorial rodents of Patagonia, southern Argentina. J Zool 202:225–237

    Google Scholar 

  • Rajičić M, Romanenko SA, Karamysheva TV, Blagojević J, Adnađević T, Budinski I, Bogdanov AS, Trifonov VA, Rubtsov NB, Vujošević M (2017) The origin of B chromosomes in yellow-necked mice (Apodemus flavicollis)-break rules but keep playing the game. PLoS One 12(3):e0172704

    PubMed  PubMed Central  Google Scholar 

  • Reig OA (1987) An assessment of the systematics and evolution of the Akodontini, with the description of new fossil species of Akodon (Cricetidae: Sigmodontinae). Field Zool 39:347–399

    Google Scholar 

  • Rodriguez VA, Theiler GR (2007) Micromamíferos de la Región de Comodoro Rivadavia (Chubut, Argentina). Mastozool Neotrop 14:97–100

    Google Scholar 

  • Rodriguez M, Montoya V, Venegas W (1983) Cytogenetic analysis of some Chielan species of the genus Akodon Meyen (Rodentia, Cricetidae). Caryologia 36:129–138

    Google Scholar 

  • Schweizer D (1980) Simultaneous fluorescent staining of R-bands and specific heterochromatic regions (DA/DAPI bands) in human chromosomes. Cytogenet Cell Genet 27:190–193

    PubMed  CAS  Google Scholar 

  • Sikes RS, and the Animal Care and Use Committee of the American Society of Mammalogists (2016) Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal 97:663–688

    PubMed  PubMed Central  Google Scholar 

  • Silva MJJ, Yonenaga-Yassuda Y (2004) B chromosomes in Brazilian rodents. Cytogenet Genome Res 106:257–263

    PubMed  CAS  Google Scholar 

  • Smith MF, Patton JL (1999) Phylogenetic relationships and the radiation of Sigmodontine rodents in South America: evidence from Cytochromo b. J Mamm Evol 6:89–127

    Google Scholar 

  • Spotorno AE, Zuleta CA, Cortes A (1990) Evolutionary systematics and heterocrony in Abrotrix species (Rodentia, Cricetidae). Evol Biol 4:37–62

    Google Scholar 

  • Steppan SJ, Ramirez O, Banbury J, Huchon D, Pacheco V, Walker LI, Spotorno AE (2007) A molecular reappraisal of the systematics of the leaf-eared mice Phyllotis and their relatives. In: Kelt DA, Lessa EP, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honoring the life and legacy of Oliver P, vol 134. Univ California Publ Zool USA, Pearson, pp 799–826

    Google Scholar 

  • Sumner AT (1972) A simple technique for demostrating centromeric heterochromatin. Exp Cell Res 75:304–306

    PubMed  CAS  Google Scholar 

  • Swier VJ, Bradley RD, Rens W, Elder FFB, Baker RJ (2009) Patterns of chromosomal evolution in Sigmodon, evidence from whole chromosome paints. Cytogenet Genome Res 125:54–66

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    PubMed  PubMed Central  CAS  Google Scholar 

  • Teta P, Cañon C, Patterson BD, Pardiñas UFJ (2016) Phylogeny of the tribe Abrotrichini (Cricetidae, Sigmodontinae): integrating morphological and molecular evidence into a new classification. Cladistics 33:153–182

    Google Scholar 

  • Vujošević M, Blagojević J (2004) B chromosomes in populations of mammals. Cytogenet Genome Res 106:247–256

    PubMed  Google Scholar 

  • Vujošević M, Rajičić M, Blagojević J (2018) B chromosomes in populations of mammals revisited. Genes 9:487

    PubMed Central  Google Scholar 

  • Wójcik JM, Wójcik AM, Macholán M, Piálek J, Zima J (2004) The mammalian model for population studies of B chromosomes: the wood mouse (Apodemus). Cytogenet Genome Res 106:264–270

    PubMed  Google Scholar 

Download references

Acknowledgments

Our thanks to Benjamín Bender for his assistance with the material deposited in the Mammal Collection of the Instituto Argentino de Zonas Aridas (CMI), IADIZA-CONICET, Mendoza.

Funding

This research has been partially funded by PIP-CONICET 1122015 0100258 CO: RAO, PT, CL; PICT 2016-0537: PT, CL, as well as by PIP No 0182, CONICET, RI: ADB and funds from the CICPBA and UNLP of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lanzone.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig 1:

Map showing the sampling localities of the abrotrichines analyzed with chromosome techniques in this work: 1- Barreal, San Juan; 2- Las Heras, Mendoza; 3- Tunuyán, Mendoza; 4-San Carlos, Mendoza; 5- Malargüe, Mendoza; 6- San Rafael, Mendoza. (JPG 2242 kb)

Supplementary Table 1:

Species, collection number, sex and chromosome constitution of the specimens analyzed in this work. For Paynomys macronyx the different morphology of the X chromosome, the presences of the heteromorphic pair and the number of B chromosomes per cell per individual, are indicated. (XLSX 13 kb)

Supplementary Table 2:

Chromosome data in the tribe Abrothichini. In grey are chromosome complements that could not be confirmed. The species name were in accordance with the revision done by Teta et al. (2016) (XLSX 12 kb)

Supplementary Table 3:

K2P genetic distances of different DNA regions (Cyt-b; FBG; IRBP; ADH) of abrotrichines obtained from GenBank sequences. The minimum and maximum of intrageneric comparisons within Abrothrix (Abrotrichina sensu Teta et al. 2016), intergeneric comparisons within Notiomyina, and inter subtribe genetic distances (between samples from Abrotrichina and Notiomyina) are showed. (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Rosa, F., Ojeda, A., Novillo, A. et al. Chromosome variability and evolution in rodents of the tribe Abrotrichini (Rodentia, Cricetidae, Sigmodontinae). Mamm Res 65, 59–67 (2020). https://doi.org/10.1007/s13364-019-00463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-019-00463-0

Keywords

Navigation