Skip to main content
Log in

Density-dependent processes determine the distribution of chromosomal races of the common shrew Sorex araneus (Lipotyphla, Mammalia)

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

The common shrew is subdivided into 74 chromosomal races, widely distributed in the postglacial area from the Britain Islands to Lake Baikal. Based on 1969 karyotypes from 216 localities, we present for the first time a map of ranges of 25 chromosomal races (except the Altai race) currently known in Russia. We revealed two centers of high karyotypic diversity: the western (near Baltic Sea) and the eastern (near Baikal Lake). The studied races were categorized as small-, medium-, and large-range races, and small-range races concentrated around those two centers of karyotypic diversity. We did not find any significant association between race range size and ecological zone, latitude, or the ambient temperature. Physical barriers, such as Ural Mountain or rivers, do not limit race distribution. The width of rivers that divide a range of a single race or ranges of two different races does not differ. We supposed that the occupation of an area by a race could limit the invasion of a different race from an adjacent area and expansion of its range, thus contributing to race parapatric distribution alone without additional effects of physical barriers. Based on karyotype similarity and geographic localization, we combined races into four “karyotypic chains,” in which the races can be derived from one another consequently by a single chromosomal translocation. The present distribution of the common shrew races in Russia supports the idea that it has resulted from recolonization from refugia governed by the density-dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen KK, Azuma N, Barnola J-M et al (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431:147–151. doi:10.1038/nature02805

    Article  CAS  PubMed  Google Scholar 

  • Andersson AC, Narain Y, Tegelstrӧm H, Fredga K (2004) No apparent reduction of gene flow in a hybrid zone between the west and north European karyotypic groups of the common shrew, Sorex araneus. Mol Ecol 13:1205–1215. doi:10.1111/j.1365-294X.2004.02146.x

    Article  CAS  PubMed  Google Scholar 

  • Andersson AC, Alström-Rapaport C, Fredga K (2005) Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden. Implications for interpreting chromosomal evolution and colonization history. Mol Ecol 14:2703–2716. doi:10.1111/j.1365-294X.2005.02584.x

    Article  CAS  PubMed  Google Scholar 

  • Bilton DT, Mirol PM, Mascheretti S, Fredga K, Zima J, Searle JB (1998) Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc R Soc Lond 265:1219–1226. doi:10.1098/rspb.1998.0423

    Article  CAS  Google Scholar 

  • Biltueva L, Vorobieva N, Perelman P et al (2011) Karyotype evolution of Eulipotyphla (Insectivora): the genome homology of seven Sorex species revealed by comparative chromosome painting and banding data. Cytogenet Genome Res 135:51–64. doi:10.1159/000330577

    Article  CAS  PubMed  Google Scholar 

  • Bobretsov AV (2004) The common shrew. In: Kuprianov AG (ed) Mlekopitaushchie Pechoro-Ilychskogo zapovednika. Komi knizhnoe izd-vo, Syktyvkar, pp 46–64 [In Russian]

    Google Scholar 

  • Borisov YM, Kryshchuk IA, Cherepanova EV, Gajduchenko HS, Orlov VN (2013) Chromosomal polymorphism of populations of the common shrew, Sorex araneus L., in Belarus. Acta Theriol 59:243–249. doi:10.1007/s13364-013-0160-y

    Article  Google Scholar 

  • Brünner H, Lugon-Moulin N, Balloux F, Fumagalli L, Hausser J (2002) A taxonomical re-evaluation of the Valais chromosome race of the common shrew Sorex araneus (Insectivora: Soricidae). Acta Theriol 45:119–130. doi:10.1007/BF03194146

    Google Scholar 

  • Bulatova N, Jones RM, White TA, Shchipanov NA, Pavlova SV, Searle JB (2011) Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in European Russia. J Evol Biol 24:573–586. doi:10.1111/j.1420-9101.2010.02191.x

    Article  CAS  PubMed  Google Scholar 

  • Bystrakova N, Bulatova N, Kovalskaya Y, Shchipanov N, Kalinin A, Nadjafova R, Searle JB (2003) Geographical limits of chromosomal races of common shrew Sorex araneus L. in the middle Volga (east European Russia). Mammalia 67:187–191. doi:10.1515/mamm.2003.67.2.187

    Article  Google Scholar 

  • Dobigny G, Ducroz J-F, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53:470–484. doi:10.1080/10635150490445698

    Article  PubMed  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351. doi:10.1016/j.tree.2008.04.004

    Article  PubMed  Google Scholar 

  • Fedyk S, Chętnicki W (2009) Whole-arm reciprocal translocation in a hybrid population of Sorex araneus. Chromosom Res 17:451–454. doi:10.1007/s10577-009-9036-z

    Article  CAS  Google Scholar 

  • Fredga K (2007) Reconstruction of the postglacial colonization of Sorex araneus into northern Scandinavia based on karyotype studies, and the subdivision of the Abisko race into three. Russ J Theriol 6:85–96

    Google Scholar 

  • Fredga K, Narain Y (2000) The complex hybrid zone between the Abisko and Sidensjö chromosome races of Sorex araneus in Sweden. Biol J Linn Soc 70:285–307. doi:10.1111/j.1095-8312.2000.tb00211.x

    Article  Google Scholar 

  • Fumagalli L, Taberlet P, Favre L, Hausser J (1996) Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol 13:31–46

    Article  CAS  PubMed  Google Scholar 

  • Grichuk VP (1982) Vegetation of Europe in the Late Pleistocene. In: Gerasimov IP, Velichko AA (eds) Paleogeografiya Evropy za poslednie sto tysyach let (paleogeography of Europe during the last hundred thousand years). Nauka, Moscow, pp 92–109 (In Russian)

    Google Scholar 

  • Halkka L, Soderlund V, Skaren U, Heikkila J (1987) Chromosomal polymorphism and racial evolution of Sorex araneus. Hereditas 106:257–275. doi:10.1111/j.1601-5223.1987.tb00260.x

    Article  Google Scholar 

  • Halkka L, Kaikusalo A, Vakula N (1994) Revision of Sorex araneus L. chromosome nomenclature, and race N new to Finland. Ann Zool Fenn 31:283–288

    Google Scholar 

  • Hauffe HC, Gimenez MD, Searle JB (2012) Chromosomal hybrid zones in the house mouse. In: Macholan M, Baird S, Munclinger P, Pialek J (eds) Evolution of the house mouse. Cambridge University Press, UK, pp 407–430

    Chapter  Google Scholar 

  • Hausser J, Fedyk S, Fredga K, Searle JB, Volobouev V, Wójcik J, Zima J (1994) Definition and nomenclature of the chromosome races of Sorex araneus. Folia Zool 43:1–9

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol J Linn Soc 58:247–276. doi:10.1111/j.1095-8312.1996.tb01434.x

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial colonization of European biota. Biol J Linn Soc 68:87–112. doi:10.1111/j.1095-8312.1999.tb01160.x

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi:10.1038/35016000

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc B: Biol Sci 359(1442):183–110. doi:10.1098/rstb.2003.1388

    Article  CAS  Google Scholar 

  • Hewitt GM (2011) Quaternary phylogeography: the roots of hybrid zones. Genetica 139:617–638. doi:10.1007/s10709-011-9547-3

    Article  PubMed  Google Scholar 

  • Hewitt GM, Ibrahim KM (2001) Inferring glacial refugia and historical migrations with molecular phylogenies. In: Silvertown J, Antonovics J (eds) Integrating Ecology and evolution in a spatial context. Blackwell Science Ltd., Oxford, pp 271–294

    Google Scholar 

  • Horn A, Basset P, Yannic G, Banaszek A, Borodin PM, Bulatova N et al (2012) Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus). Evolution 66:882–889. doi:10.1111/j.1558-5646.2011.01478.x

    Article  PubMed  Google Scholar 

  • Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Trends Ecol Evol 15(6):250–255

    Article  CAS  PubMed  Google Scholar 

  • Jones RM, Searle JB (2003) Mapping the course of the Oxford-hermitage chromosomal hybrid zone 9n the common shrew (Sorex araneus) – a GIS approach. Mammalia 67:193–200

    Article  Google Scholar 

  • Key KHL (1968) The concept of stasipatric speciation. Syst Biol 17(1):14–22. doi:10.1093/sysbio/17.1.14

    Article  Google Scholar 

  • Král B, Radjabli S (1974) Banding patterns and Robertsonian fusion in the western Siberian population of Sorex araneus (Insectivora, Soricidae). Zool Listy 23:217–227

    Google Scholar 

  • Kuprianova IF (1976) Abundance and biotopic relations in red-toothed shrews in Arkhangelskaia area. In: Fauna i ecologia zhivotnyh, part 2. MGPI, Moscow, pp 170–130 [In Russian]

    Google Scholar 

  • Kuprianova IF, Naumov SP (1986) Specific of reproduction of small mammals in mid-taiga of the European north of USSR. Bull MOIP 91:17–28

    Google Scholar 

  • Medico-geographical Atlas of Russia (2015) Natural Focal Diseases. In: Malkhazova SM (ed) Faculty of Geography. Lomonosov Moscow State University, Moscow 208 p

    Google Scholar 

  • Meylan A, Hausser J (1973) Les chromosomes des Sorex du groupe araneus–arcticus (Mammalia, Insectivora). Z Säugetierkd 38:143–158

    Google Scholar 

  • Mishta AV, Searle JB, Wójcik JM (2000) Karyotypic variation of the common shrew Sorex araneus in Belarus, Estonia, Latvia, Lithuania and Ukraine. Acta Theriol 45:47–58

    Article  Google Scholar 

  • Mol J (2008) Definition of the time series. Landscape and climatic change during the last glaciation in Europe; a review. In: Markova AK, van Kolfschoten T (eds) Evolution of European ecosystems during Pleistocene – Holocene transition (24-8 kyr BP). KMK Scientific Press, Moscow, pp 73–90 [in Russian]

    Google Scholar 

  • Orlov VN, Kozlovsky AI (2002) The role of glacial epochs in the formation of chromosomal polymorphism in the common shrew Sorex araneus (Insectivora, Mammalia). Dokl Biol Sci 386:462–465. doi:10.1023/A:1020782805637

    Article  CAS  PubMed  Google Scholar 

  • Orlov VN, Kozlovsky AI, Okulova NM, Balakirev AE (2007) Postglacial recolonisation of European Russia by the common shrew Sorex araneus. Russ J Theriol 6:97–104

    Google Scholar 

  • Orlov VN, Borisov YM, Irkhin SY, Kovaleva AA (2010) Characteristics of the contact zone of three chromosome races of the common shrew Sorex araneus L. (Mammalia) as indices of interpopulation competition. Russ J Ecol 41(6):519–523. doi:10.1134/S1067413610060093

    Article  Google Scholar 

  • Pavlova SV, Bulatova NS (2010) Identification of a novel WART-like rearrangement in complex heterozygotes in an interracial hybrid zone of the common shrew Sorex araneus L. Rus J Genet 46:1125–1126

    Article  CAS  Google Scholar 

  • Pavlova SV, Shchipanov NA (2014) A hybrid zone between the Kirillov and Petchora chromosomal races of the common shrew (Sorex araneus L., 1758) in northeastern European Russia. Preliminary description. Acta Theriol 59:415–426. doi:10.1007/s13364-014-0183-z

    Article  Google Scholar 

  • Pavlova SV, Kolomiets OL, Bulatova NS, Searle JB (2008) Demonstration of a WART in a hybrid zone of the common shrew (Sorex araneus Linnaeus, 1758). Comp Cytogenet 2:115–120

    Google Scholar 

  • Pavlova SV, Tumasian PA, Shchipanov NA (2014) Karyotypic variant diversity in the common shrew Sorex araneus (Eulipotyphla, Mammalia) in European Russia. Povolzhskiy J Ecol 4:555–563

    Google Scholar 

  • Polly PD (2007) Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype. Russ J Theriol 6:73–84

    Google Scholar 

  • Polyakov AV, Zima J, Banaszek KA, Searle JB, Borodin P (2000a) New chromosome races of the common shrew Sorex araneus from eastern Siberia. Acta Theriol 45:11–17

    Article  Google Scholar 

  • Polyakov AV, Zima J, Searle JB, Borodin P, Ladygina T (2000b) Chromosome races of the common shrew Sorex araneus in the Ural Mts: a link between Siberia and Scandinavia? Acta Theriol 45:19–26

    Article  Google Scholar 

  • Polyakov AV, Panov VV, Ladygina TY, Bochkarev MN, Rodionova MI, Borodin PM (2001) Chromosome evolution of the common shrew Sorex araneus L. in postglacial time in the south Ural and Siberia. Russ J Genet 37:448–455

    Article  Google Scholar 

  • Polyakov AV, Volobouev VT, Aniskin VM, Zima J, Searle JB, Borodin PM (2003) Altitude-delimited distribution of chromosome races of the common shrew (Sorex araneus) in the West Siberia. Mammalia 67:201–207

    Article  Google Scholar 

  • Polyakov AV, White TA, Jones RM, Borodin PM, Searle JB (2011) Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in Siberia. J Evol Biol 24:1393–1402. doi:10.1111/j.1420-9101.2011.02266.x

    Article  CAS  PubMed  Google Scholar 

  • Ratkiewicz M, Fedyk S, Banaszek A, Chętnicki W, Szałaj KA, Gelly L, Taberlet P (2002) The evolutionary history of the two karyotypic groups of the common shrew Sorex araneus, in Poland. Heredity 88:235–242. doi:10.1038/sj.hdy.6800032

    Article  CAS  PubMed  Google Scholar 

  • Ratkiewicz M, Banaszek A, Jadwiszczak KA, Chętnicki W, Fedyk S (2003) Genetic diversity, stability of population structure and barriers to gene flow in a hybrid zone between two Sorex araneus chromosome races. Mammalia 67:275–284

    Article  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358. doi:10.1016/S0169-5347(01)02187-5

    Article  PubMed  Google Scholar 

  • Searle JB (1984) Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny. Syst Biol 33:184–194

    Article  Google Scholar 

  • Searle JB (1986) Factors responsible for a karyotypic polymorphism in the common shrew, Sorex araneus. Proc R Soc Lond B 229:277–298

    Article  CAS  PubMed  Google Scholar 

  • Searle JB (1988) Karyotypic variation and evolution in the common shrew. In: Brandham PE (ed) Kew chromosome conference III. HMSO, London, pp 97–107

    Google Scholar 

  • Searle JB (1993) Chromosomal hybrid zones in eutherian mammals. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 309–353

    Google Scholar 

  • Searle JB, Wójcik JM (1998) Chromosomal evolution: the case of Sorex araneus. Survey of hybrid zones. In: Wójcik JM, Wolsan M (eds) Evolution of shrews. Mammal Research Institute, Białowieża, pp 243–253

    Google Scholar 

  • Searle JB, Fedyk S, Fredga K, Hausser J, Volobouev VT (2010) Nomenclature for the chromosomes of the common shrew (Sorex araneus). Comp Cytogenet 4:87–96. doi:10.3897/compcytogen.v4i1.28

    Article  Google Scholar 

  • Servedio MR, Noor MAF (2003) The role of reinforcement in speciation: theory and data. Annu Rev Ecol Evol Syst 34:339–364. doi:10.1146/annurev.ecolsys.34.011802.132412

    Article  Google Scholar 

  • Shchipanov NA, Pavlova SV (2013) Contact zones and ranges of chromosomal races of the common shrew, Sorex araneus, in northeastern European Russia. Folia Zool 62:24–35

    Google Scholar 

  • Shchipanov NA, Pavlova SV (2016) Multi-level subdivision in the species group “araneus” of the genus Sorex. 1. Chromosomal differentiation. Zool Zhurnal 95:216–233 [in Russian, with English summary]

    Google Scholar 

  • Sheftel BI (1989) Long-term and seasonal dynamics of shrews in Central Siberia. Ann Zool Fenn 26:357–369

    Google Scholar 

  • Sheftel BI (1994) Spatial distribution of nine species of shrews in the central Siberian taiga. In: Merrit JF, Kircland GL Jr, Rose RK (eds) Advances in the biology of shrews. Carnegie museum of natural history, vol 18. special publication, Pittsburgh, pp 45–56

    Google Scholar 

  • Szałaj KA, Fedyk S, Banaszek A, Chętnicki W, Ratkiewicz M (1996) A hybrid zone between two chromosome races of the common shrew, Sorex araneus, in eastern Poland: preliminary results. Hereditas 125:169–176. doi:10.1111/j.1601-5223.1996.00169.x

    Google Scholar 

  • Taberlet P, Fumagalli L, Hausser J (1994) Chromosomal versus mitochondrial DNA evolution: tracking the evolutionary history of the south-western European populations of the Sorex araneus group (Mammalia, Insectivora). Evolution 48:623–636. doi:10.2307/2410474

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464. doi:10.1046/j.1365-294x.1998.00289.x

    Article  CAS  PubMed  Google Scholar 

  • Velichko AA (1984) Late Pleistocene paleoclimatic reconstructions. In: Velichko AA (ed) Late Quaternary environments of the soviet union. University of Minnesota Press, Minneapolis, pp 261–285

    Google Scholar 

  • Velichko AA, Zelikson EM (2005) Landscape, climate and mammoth food resources in the East European plain during the Late Paleolithic epoch. Quat Int 126-128:137–151. doi:10.1016/j.quaint.2004.04.019

    Article  Google Scholar 

  • Volobouev VT (1989) Phylogenetic relationships of the Sorex araneus-arcticus species complex (Insectivora, Soricidae) based on high resolution chromosome analyses. J Hered 80:284–290

    Article  Google Scholar 

  • Volobouev VT, Catzeflis F (1989) Mechanisms of chromosomal evolution in three European species of the Sorex araneus-arcticus group (Insectivora; Soricidae). Z Zool Syst Evol 27:252–262

    Article  Google Scholar 

  • Waters JM (2011) Competitive exclusion: phylogeography’s ‘elephant in the room’? Mol Ecol 20:4388–4394. doi:10.1111/j.1365-294X.2011.05286.x

    Article  PubMed  Google Scholar 

  • Waters JM, Fraser CI, Hewitt GM (2013) Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol 28:78–85. doi:10.1016/j.tree.2012.08.024

    Article  PubMed  Google Scholar 

  • White MJD (1978) Modes of speciation. Freeman, San Francisco

    Google Scholar 

  • White TA, Bordewich M, Searle JB (2010) A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol 59:262–276. doi:10.1093/sysbio/syq004

    Article  CAS  PubMed  Google Scholar 

  • Wójcik JM (1993) Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution. Acta Theriol 38:315–338

    Article  Google Scholar 

  • Wójcik JM, Searle JB (1988) The chromosome compliment of Sorex granarius – the ancestral karyotype of the common shrew (Sorex araneus)? Heredity 61:225–229

    Article  PubMed  Google Scholar 

  • Wójcik JM, Ratkiewicz M, Searle JB (2002) Evolution of the common shrew, Sorex araneus: chromosomal and molecular aspects. Acta Theriol 47:139–167

    Article  Google Scholar 

  • Wójcik JM, Borodin PM, Fedyk S et al (2003) The list of chromosome races of the common shrew Sorex araneus (updated 2002). Mammalia 68:169–179. doi:10.1515/mamm.2003.67.2.169

    Google Scholar 

  • Zaitsev MV (2005) Ecological and morphological peculiarities in the structure and function of feeding apparatus of shrews. In: Evolutionary factors of the formation of animal life diversity. KMK Scientific Press Ltd., Moscow, pp 135–145

    Google Scholar 

  • Zima J, Lukáčová L, Macholán M (1998) Chromosomal evolution in shrews. In: Wójcik JM, Wolsan M (eds) Evolution of shrews. Mammal research institute Polish academy of sciences, Białowieża, pp 175–218

    Google Scholar 

Download references

Acknowledgements

Authors are very grateful to Dr. A. Tchabovsky for comprehensive comments and detailed suggestions that significantly improved the manuscript. Blue Pencil Science Company corrected English. This work was supported by the Russian Foundation for Basic Research (grant no. 15-04-04759), the President Grant for Russian Distinguished Young Scientists MK-4496.2015.4 (for SP), and the Program for Fundamental Research of Presidium of RAS “Biological diversity” (for NS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana V. Pavlova.

Additional information

Communicated by: Jan M. Wójcik

Electronic supplementary material

ESM 1

(PDF 610 kb)

ESM 2

(PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipanov, N.A., Pavlova, S.V. Density-dependent processes determine the distribution of chromosomal races of the common shrew Sorex araneus (Lipotyphla, Mammalia). Mamm Res 62, 267–282 (2017). https://doi.org/10.1007/s13364-017-0314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-017-0314-4

Keywords

Navigation