Skip to main content

Advertisement

Log in

Detection of Large Ions in Time-of-Flight Mass Spectrometry: Effects of Ion Mass and Acceleration Voltage on Microchannel Plate Detector Response

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Smith, L.M., Kelleher, N.L.: Consortium for Top Down Proteomics: Proteoform: a single term describing protein complexity. Nat. Methods 10(3), 186–187 (2013)

    Article  CAS  Google Scholar 

  2. Kellie, J.F., Catherman, A.D., Durbin, K.R., Tran, J.C., Tipton, J.D., Norris, J.L., Witkowski II, C.E., Thomas, P.M., Kelleher, N.L.: Robust analysis of the yeast proteome under 50kDa by molecular-mass-based fractionation and top-down mass spectrometry. Anal. Chem. 84(1), 209–215 (2012)

    Article  CAS  Google Scholar 

  3. Tran, J.C., Zamdborg, L., Ahlf, D.R., Lee, J.E., Catherman, A.D., Durbin, K.R., Tipton, J.D., Vellaichamy, A., Kellie, J.F., Li, M., Wu, C., Sweet, S.M., Early, B.P., Siuti, N., LeDuc, R.D., Compton, P.D., Thomas, P.M., Kelleher, N.L.: Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480(7376), 254–258 (2011)

    Article  CAS  Google Scholar 

  4. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)

    Article  CAS  Google Scholar 

  5. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Matsuo, T.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2(8), 151–153 (1988)

    Article  CAS  Google Scholar 

  6. Hillenkamp, F., Karas, M., Beavis, R.C., Chait, B.T.: Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63(24), 1193A–1203A (1991)

    Article  CAS  Google Scholar 

  7. Scalf, M., Westphall, M.S., Smith, L.M.: Charge reduction electrospray mass spectrometry. Anal. Chem. 72(1), 52–60 (1999)

    Article  Google Scholar 

  8. Stephenson, J.L., McLuckey, S.A.: Ion/ion reactions in the gas phase: proton transfer reactions involving multiply-charged proteins. J. Am. Chem. Soc. 118(31), 7390–7397 (1996)

    Article  CAS  Google Scholar 

  9. Lee, J., Chen, H., Liu, T., Berkman, C.E., Reilly, P.T.: High resolution time-of-flight mass analysis of the entire range of intact singly-charged proteins. Anal. Chem. 83(24), 9406–9412 (2011)

    Article  CAS  Google Scholar 

  10. Chen, X., Westphall, M.S., Smith, L.M.: Mass spectrometric analysis of DNA mixtures: instrumental effects responsible for decreased sensitivity with increasing mass. Anal. Chem. 75(21), 5944–5952 (2003)

    Article  CAS  Google Scholar 

  11. Weidmann, S., Mikutis, G., Barylyuk, K., Zenobi, R.: Mass discrimination in high-mass MALDI-MS. J. Am. Soc. Mass Spectrom. 24(9), 1396–1404 (2013)

    Article  CAS  Google Scholar 

  12. Geno, P.W.: Ion detection in mass spectrometry, mass spectrometry in the biological sciences: a tutorial, pp. 133–142. Springer, The Netherlands (1992)

    Google Scholar 

  13. Geno, P.W., Macfarlane, R.D.: Secondary electron emission induced by impact of low-velocity molecular ions on a microchannel plate. Int. J. Mass Spectrom. Ion Process. 92, 195–210 (1989)

    Article  CAS  Google Scholar 

  14. Beuhler, R.J., Friedman, L.: Threshold studies of secondary electron emission induced by macro-ion impact on solid surfaces. Nucl. Instrum. Meth. 170, 309–315 (1980)

    Article  CAS  Google Scholar 

  15. Meier, R., Eberhardt, P.: Velocity and ion species dependence of the gain of microchannel plates. Int. J. Mass Spectrom. Ion Process. 123(1), 19–27 (1993)

    Article  CAS  Google Scholar 

  16. Westmacott, G., Ens, W., Standing, K.G.: Secondary ion and electron yield measurements for surfaces bombarded with large molecular ions. Nucl. Inst. Methods Phys. Res. B 108(3), 282–289 (1996)

    Article  CAS  Google Scholar 

  17. Westmacott, G., Frank, M., Labov, S.E., Benner, W.H.: Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions. Rapid Commun. Mass Spectrom. 14, 1854–1861 (2000)

    Article  CAS  Google Scholar 

  18. Axelsson, J., Parilis, E.S., Reimann, C.T., Sullivan, P., Sundqvist, B.U.R.: Electron emission from conducting surfaces impacted by multiply-charged polyatomic ions. Nucl. Inst. Methods Phys. Res. B 101(4), 343–356 (1995)

    Article  CAS  Google Scholar 

  19. de Hoffmann, E., Stroobant, V.: Mass spectrometry principles and applications, 3rd edn. pp. 126. John Wiley and Sons, Chichester (2007)

  20. Hilton, G.C., Martinis, J.M., Wollman, D.A., Irwin, K.D., Dulcie, L.L., Gerber, D., Gillevet, P.M., Twerenbold, D.: Impact energy measurement in time-of-flight mass spectrometry with cryogenic microcalorimeters. Nature 391(6668), 672–675 (1998)

    Article  CAS  Google Scholar 

  21. Wenzel, R.J., Matter, U., Schultheis, L., Zenobi, R.: Analysis of megadalton ions using cryodetection MALDI time-of-flight mass spectrometry. Anal. Chem. 77, 4329–4337 (2005)

    Article  CAS  Google Scholar 

  22. Park, J., Qin, H., Scalf, M., Hilger, R.T., Westphall, M.S., Smith, L.M., Blick, R.H.: A mechanical nanomembrane detector for time-of-flight mass spectrometry. Nano Lett. 11(9), 3681–3684 (2011)

    Article  CAS  Google Scholar 

  23. Fuerstenau, S.D., Benner, W.H.: Molecular weight determination of megadalton DNA electrospray ions using charge detection time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 9(15), 1528–1538 (1995)

    Article  CAS  Google Scholar 

  24. Benner, W.H., Bogan, M.J., Rohner, U., Boutet, S., Woods, B., Frank, M.: Nondestructive characterization and alignment of aerodynamically focused particle beams using single particle charge detection. J. Aerosol Sci. 39(11), 917–928 (2008)

    Article  CAS  Google Scholar 

  25. Beuhler, R.J., Friedman, L.: Low noise, high voltage secondary emission ion detector for polyatomic ions. Int. J. Mass Spectrom Ion Phys 23(2), 81–97 (1977)

    Article  CAS  Google Scholar 

  26. Fraser, G.W., Pain, M.T., Lees, J.E., Pearson, J.F.: The operation of microchannel plates at high count rates. Nucl. Inst. Methods Phys. Res. A 306, 247–260 (1991)

    Article  Google Scholar 

  27. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)

    Article  Google Scholar 

  28. Qiao, H., Collado, V., Piyadasa, G., Loboda, A., Kozlovski, V., Spicer, V., Standing, K.G., Ens, W.: Comparison of electron and ion emission efficiencies in a hybrid detector in an orthogonal TOF instrument. Proceedings of the 53rd American Society for Mass Spectrometry Annual Conference, San Antonio (2005)

  29. Gajewski, J.B.: Mathematical model of non-contact measurements of charges while moving. J. Electrost. 15(1), 81–92 (1984)

    Article  Google Scholar 

  30. Wiza, J.L.: Microchannel plate detectors. Nucl. Instrum. Meth. 162, 587–601 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grant R01 GM103315-01. The authors thank Dr. Michael Westphall for helpful discussions, and Dr. Ryan Hilger and Dr. Brian Frey for their careful review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd M. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Li, Q. & Smith, L.M. Detection of Large Ions in Time-of-Flight Mass Spectrometry: Effects of Ion Mass and Acceleration Voltage on Microchannel Plate Detector Response. J. Am. Soc. Mass Spectrom. 25, 1374–1383 (2014). https://doi.org/10.1007/s13361-014-0903-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0903-2

Key words

Navigation