Skip to main content
Log in

The survival, growth, and detoxifying enzyme activities of grasshoppers Oedaleus asiaticus (Orthoptera: Acrididae) exposed to toxic rutin

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Secondary compounds from plants are often insecticidal. Rutin, a plant bioflavonoid, has demonstrated insect control activity. We studied the survival, growth, and detoxifying enzyme activities of grasshopper Oedaleus asiaticus Bey-Bienko (Orthoptera: Acrididae) exposed to rutin using an artificial indoor feeding trial and field cage study for three years. O. asiaticus had reduced growth rate and decreased survival when exposed to rutin. The 7-day LC50 was 763.7 mg/L. Rutin induced an elevated level of reactive oxygen species (ROS) representing oxygen damage. Activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD); and the detoxifying enzymes, cytochrome P450s (CYP450s), UDP-glucuronosyltransferase (UGTs), carboxylesterase (CarEs), and glutathione-S-transferase (GSTs) were all significantly increased when Oedaleus asiaticus exposed to rutin. Rutin was toxic to O. asiaticus and suppressed grasshopper growth. The detrimental effects of rutin to O. asiaticus offer a new option for the development of biological pesticides and potential application to grasshopper biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Zaid MM, Beninger CW, Arnason JT (1993) The effect of one flavone, two catechins and four flavonols on mortality and growth of the European corn borer (Ostrinianubilalis, Hubner). Biochem Syst Ecol 21:415–420

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Atreya K, Sitaula BK, Overgaard H, Bajracharya RM, Sharma S (2012) Knowledge, attitude and practices of pesticide use and acetylcholinesterase depression among farm workers in Nepal. Int J Environ Health Res 22:401–415

    CAS  PubMed  Google Scholar 

  • Birnbaum SSL, Rinker DC, Gerardo NM, Abbot P (2017) Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Mol Ecol 26:6742–6761

    CAS  PubMed  Google Scholar 

  • Brosché M, Overmyer K, Wrzaczek M, Kangasjärvi J, Kangasjärvi S (2009) Abiotic stress adaptation in plants. Springer, Berlin

    Google Scholar 

  • Caballero C, López-Olguín J, Ruiz M, Ortego F, Castañera P (2008) Antifeedant activity and effects of terpenoids on detoxication enzymes of the beet armyworm, Spodoptera exigua (Hübner). Spanish J Agric Res 6:177–184

    Google Scholar 

  • Campos EVR, Proença PLF, Oliveira JL, Bakshi M, Abhilash PC, Fraceto LF (2018) Use of botanical insecticides for sustainable agriculture: future perspectives. Ecol Indic 105:483–495

    Google Scholar 

  • Castañeda LE, Figueroa CC, Nespolo RF (2010) Do insect pests perform better on highly defended plants? costs and benefits of induced detoxification defences in the aphid Sitobion avenae. J Evol Biol 23:2474–2483

    PubMed  Google Scholar 

  • Cease AJ, Hao SG, Kang L, Elser JJ, Harrison JF (2010) Are color or high rearing density related to migratory poly-phenism in the band-winged grasshopper, Oedaleus asiaticus? J Insect Physiol 56:926–936

    CAS  PubMed  Google Scholar 

  • Cease AJ, Elser JJ, Ford CF, Hao S, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467–469

    CAS  PubMed  Google Scholar 

  • Celorio-Mancera ML, Ahn SJ, Vogel H, Heckel DG (2011) Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera. BMC Genom 12:575

    CAS  Google Scholar 

  • Cervera A, Maymó AC, Martínez-Pardo R, Garcerá MD (2003) Antioxidant enzymes in Oncopeltus fasciatus (Heteroptera: Lygaeidae) exposed to cadmium. Environ Entomol 32:705–710

    CAS  Google Scholar 

  • Cevizci S, Babaoglu UT, Bakar C (2015) Evaluating pesticide use and safety practices among farmworkers in gallipoli peninsula, Turkey. Southeast Asian J Trop Med Public Health 46:143–154

    PubMed  Google Scholar 

  • Chen C, Han P, Yan W, Wang S, Shi X, Zhou X, Desneux N, Gao X (2017) Uptake of quercetin reduces larval sensitivity to lambda-cyhalothrin in Helicoverpa armigera. J Pest Sci 91:919–926

    Google Scholar 

  • Cui B, Huang X, Li S, Hao K, Chang BH, Tu X, Pang B, Zhang Z (2019) Quercetin affects the growth and development of the grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). J Econ Entomol 112:1175–1182

    CAS  PubMed  Google Scholar 

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    PubMed  Google Scholar 

  • Després L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    PubMed  Google Scholar 

  • Dubose B (2009) Reactive oxygen species (ROS) and redox buffers as an interface between stress sensing, signalling and physiological responses in Daphnia magna. Comp Biochem Phys 154:S3

    Google Scholar 

  • Erb M, Robert CA (2016) Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences. Curr Opin Insect Sci 14:8–11

    PubMed  Google Scholar 

  • Francis F, Vanhaelen N, Haubruge E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch Insect Biochem Physiol 58:166–174

    CAS  PubMed  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    CAS  PubMed  Google Scholar 

  • Gordon JR, Potter MF, Haynes KF (2015) Insecticide resistance in the bed bug comes with a cost. Sci Rep 5:1–7

    Google Scholar 

  • Han JG, Zhang YJ, Wang CJ, Bai WM, Wang YR, Han GD, Li LH (2008) Rangeland degradation and restoration management in China. Rangeland J 30:233–239

    Google Scholar 

  • Hasheminia SM, Sendi JJ, Jahromi KT, Moharramipour S (2011) The effects of Artemisia annua L. and Achillea millefolium L. crude leaf extracts on the toxicity, development, feeding efficiency and chemical activities of small cabbage Pieris rapae L. (Lepidoptera: Pieridae). Pestic Biochem Physiol 99:244–249

    CAS  Google Scholar 

  • Herde M, Howe GA (2014) Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Insect Biochem Mol Biol 50:58–67

    CAS  PubMed  Google Scholar 

  • Huang X, McNeill M, Zhang Z (2016) Quantitative analysis of plant consumption and preference by Oedaleus asiaticus (Acrididae: Oedipodinae) in changed plant communities consisting of three grass species. Environ Entomol 45:163–170

    CAS  PubMed  Google Scholar 

  • Huang X, Ma J, Qin X, Tu X, Cao G, Wang G, Nong X, Zhang Z (2017) Biology, physiology and gene expression of grasshopper Oedaleus asiaticus exposed to diet stress from plant secondary compounds. Sci Rep 7:8655

    PubMed  PubMed Central  Google Scholar 

  • Isman MB (2014) Botanical insecticides: a global perspective. ACS Sym Ser 1172:21–30

    CAS  Google Scholar 

  • Jallow MF, Awadh DG, Albaho MS, Devi VY, Thomas BM (2017) Pesticide knowledge and safety practices among farm workers in Kuwait: results of a survey. Int J Environ Res Public Health 14:E340

    PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    CAS  PubMed  Google Scholar 

  • Khan S, Taning CNT, Bonneure E, Mangelinckx S, Smagghe G, Shah MM (2017) Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasitica 45:113–124

    CAS  Google Scholar 

  • Klumpen E, HoffschrÖEr N, Zeis B, Gigengack U, Dohmen E, Paul RJ (2017) Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes. Biol Cell 109:39–64

    CAS  PubMed  Google Scholar 

  • Kohl KD, Samuni-Blank M, Lymberakis P, Kurnath P, Izhaki I, Arad Z, Karasov WH, Dearing MD (2016) Effects of fruit toxins on intestinal and microbial β-glucosidase activities of seed-predating and seed-dispersing rodents (Acomys spp.). Physiol Biochem Zool 89:198–205

    PubMed  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    CAS  PubMed  Google Scholar 

  • Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52:11–20

    CAS  PubMed  Google Scholar 

  • Leicach SR, Chludil HD (2014) Plant secondary metabolites. Stud Nat Prod Chem 42:267–304

    CAS  Google Scholar 

  • Li S, Huang X, McNeill MR, Liu W, Tu X, Ma J, Lv S, Zhang Z (2019) Dietary stress from plant secondary metabolites contributes to grasshopper (Oedaleus asiaticus) migration or plague by regulating insect insulin-like signaling pathway. Front Physiol 10:531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XN, Liang P, Gao X, Shi XY (2006) Induction of the cytochrome P450 activity by plant allelochemicals in the cotton bollworm, Helicoverpa armigera (Hübner). Pestic Biochem Physiol 84:127–134

    CAS  Google Scholar 

  • López-Goldar X, Villari C, Bonello P, Borg-Karlson AK, Grivet D, Zas R, Sampedro L (2018) Inducibility of plant secondary metabolites in the stem predicts genetic variation in resistance against a key insect herbivore in maritime pine. Front Plant Sci 9:1–14

    Google Scholar 

  • Luque T, Okano K, O'Reilly DR (2002) Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. Eur J Biochem 269:819–825

    CAS  PubMed  Google Scholar 

  • Matsumura T, Matsumoto H, Hayakawa Y (2017) Heat stress hardening of oriental armyworms is induced by a transient elevation of reactive oxygen species during sublethal stress. Arch Insect Biochem Physiol 96:e21421

    Google Scholar 

  • Mcfarlane JE, Distler MHW (1982) The effect of rutin on growth, fecundity and food utilization in Acheta domesticus (L.). J Insect Physiol 28:85–88

    CAS  Google Scholar 

  • Mesbah HA, Saad ASA, Mourad AK, Taman FA, Mohamed IB (2007) Biological performance of quercetin on the cotton leaf-worm larvae, Spodoptera littoralis Boisd. (Lep. Noctuidae) and prevailing natural enemies in the Egyptian cotton fields. Commun Agric Appl Biol Sci 72:611–622

    CAS  PubMed  Google Scholar 

  • Michael W (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol 9:364

    Google Scholar 

  • Monsreal-Ceballos RJ, Ruiz-Sánchez E, Ballina-Gómez HS, Reyes-Ramírez A, González-Moreno A (2018) Effects of botanical insecticides on hymenopteran parasitoids: a meta-analysis approach. Neotrop Entomol 47:681–688

    CAS  PubMed  Google Scholar 

  • Mouden S, Klinkhamer PGL, Choi YH, Leiss KA (2017) Towards eco-friendly crop protection: natural deep eutectic solvents and defensive secondary metabolites. Phytochem Rev 16:935–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Herbivory: caterpillar saliva beats plant defences-a new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416:599–600

    CAS  PubMed  Google Scholar 

  • Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA 97:13184–13187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poreddy S, Mitra S, Schöttner M, Chandran J, Schneider B, Baldwin IT, Kumar P, Pandit SS (2015) Detoxification of hostplant’s chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counter adaptation. Nat Commun 6:8525

    CAS  PubMed  Google Scholar 

  • Prasad AK, Mukhopadhyay A (2016) Growth, nutritional indices and digestive enzymes of Hyposidra infixaria Walker (Lepidoptera: Geometridae) on artificial and natural (tea) diets. J Asia-Pac Entomol 19:167–172

    CAS  Google Scholar 

  • Pritsos CA, Ahmad S, Bowen SM, Elliott AJ, Blomquist GJ, Pardini R (1988) Antioxidant enzymes of the black swallowtail butterfly, Papilio polyxenes, and their response to the prooxidant allelochemical, quercetin. Arch Insect Biochem Physiol 8:101–112

    CAS  Google Scholar 

  • Richards LA, Glassmire AE, Ochsenrider KM, Smilanich AM, Dyer LA (2016) Phytochemical diversity and synergistic effects on herbivores. Phytochem Rev 15:1–14

    Google Scholar 

  • Rivero A, Magaud A, Nicot A, Vezilier J (2011) Energetic cost of insecticide resistance in Culex pipiens mosquitoes. J Med Entomol 48:694–700

    CAS  PubMed  Google Scholar 

  • Rosa E, Woestmann L, Biere A, Saastamoinen M (2018) A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore. Oikos 127:1539–1549

    CAS  Google Scholar 

  • Roy A, Walker WB, Vogel H, Chattington S, Larsson MC, Anderson P, Heckel DG, Schlyter F (2016) Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochem Molec 71:91–105

    CAS  Google Scholar 

  • Salunke BK, Kotkar HM, Mendki PS, Upasani SM, Maheshwari VL (2005) Efficacy of flavonoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Prot 24:888–893

    CAS  Google Scholar 

  • Schuler MA, Berenbaum MR (2013) Structure and function of cytochrome P450S in insect adaptation to natural and synthetic toxins: Insights gained from molecular modeling. J Chem Ecol 39:1232–1245

    CAS  PubMed  Google Scholar 

  • Senthil-Nathan S (2013) Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol 4:359

    PubMed  PubMed Central  Google Scholar 

  • Simmonds MS (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    CAS  PubMed  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    CAS  PubMed  Google Scholar 

  • Stamp NE, Erskine T, Paradise CJ (1991) Effects of rutin-fed caterpillars on an invertebrate predator depend on temperature. Oecologia 88:289–295

    CAS  PubMed  Google Scholar 

  • Stamp NE, Yang YL (1996) Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 77:1088–1102

    Google Scholar 

  • Taggar GK, Gill RS (2016) Host plant resistance in Vigna sp. towards whitefly, Bemisia tabaci (Gennadius): a review. Entomol Gen 36:1–24

    Google Scholar 

  • Tan QG, Luo XD (2011) Meliaceous limonoids: chemistry and biological activities. Chem Rev 111:7437–7522

    CAS  PubMed  Google Scholar 

  • Tangtrakulwanich K, Reddy GVP (2014) Advances in plant biopesticides. Springer, New Delhi

    Google Scholar 

  • Termonia A, Hsiao TH, Pasteels JM, Milinkovitch MC (2001) Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proc Natl Acad Sci USA 98:3909–3914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 164:S93–S102

    CAS  Google Scholar 

  • Wang YL, Guan ZG, Jia XS, Wu SY, Wei HG (2012) Study progress of matrine application in farming pest control. J Shanxi Agric Sci 36:27–32

    CAS  Google Scholar 

  • Wang RL, Liu SW, Baerson SR, Qin Z, Ma ZH, Su YJ, Zhang JE (2018) Identification and functional analysis of a novel cytochrome P450 gene CYP9A105 associated with pyrethroid detoxification in Spodoptera exigua Hübner. Int J Mol Sci 19:E737

    PubMed  Google Scholar 

  • Wu JQ, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Shandong Provincial Natural Science Foundation, China, ZR2019BC030.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueyue Wang or Xunbing Huang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, X., Chang, B.H. et al. The survival, growth, and detoxifying enzyme activities of grasshoppers Oedaleus asiaticus (Orthoptera: Acrididae) exposed to toxic rutin. Appl Entomol Zool 55, 385–393 (2020). https://doi.org/10.1007/s13355-020-00694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-020-00694-7

Keywords

Navigation