Skip to main content
Log in

Comprehensive analyses of microtubule-associated protein MAP65 family genes in Cucurbitaceae and CsaMAP65s expression profiles in cucumber

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

MAP65 is a microtubule-binding protein family in plants and plays crucial roles in regulating cell growth and development, intercellular communication, and plant responses to various environmental stresses. However, MAP65s in Cucurbitaceae are still less understood. In this study, a total of 40 MAP65s were identified from six Cucurbitaceae species (Cucumis sativus L., Citrullus lanatus, Cucumis melo L., Cucurbita moschata, Lagenaria siceraria, and Benincasa hispida) and classified into five groups by phylogenetic analysis according to gene structures and conserved domains. A conserved domain (MAP65_ASE1) was found in all MAP65 proteins. In cucumber, we isolated six CsaMAP65s with different expression patterns in tissues including root, stem, leaf, female flower, male flower, and fruit. Subcellular localizations of CsaMAP65s verified that all CsaMAP65s were localized in microtubule and microfilament. Analyses of the promoter regions of CsaMAP65s have screened different cis-acting regulatory elements involved in growth and development and responses to hormone and stresses. In addition, CsaMAP65-5 in leaves was significantly upregulated by salt stress, and this promotion effect was higher in cucumber cultivars with salt tolerant than that without salt tolerant. CsaMAP65-1 in leaves was significantly upregulated by cold stress, and this promotion was higher in cold-tolerant cultivar than intolerant cultivar. With the genome-wide characterization and phylogenetic analysis of Cucurbitaceae MAP65s, and the expression profile of CsaMAP65s in cucumber, this study laid a foundation for further study on MAP65 functions in developmental processes and responses to abiotic stress in Cucurbitaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data are presented in the main manuscript and the additional supplemental files.

References

  • Casas-Mollano JA, Lao NT, Kavanagh TA (2006) Intron-regulated expression of SUVH3, an Arabidopsis Su(var)3–9 homologue. J Exp Bot 57(12):3301–3311

    Article  CAS  PubMed  Google Scholar 

  • Chan J, Rutten T, Lloyd C (1996) Isolation of microtubule-associated proteins from carrot cytoskeletons: A 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J 10(2):251–259

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Smertenko AP, Igarashi H, Dixon DP, Hussey PJ (2005) Dynamic interaction of NtMAP65-1a with microtubules in vivo. J Cell Sci 118(14):3195–3201

    Article  CAS  PubMed  Google Scholar 

  • Chao J, Kong Y, Wang Q, Sun Y, Gong D, Lv J et al (2015) MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yichuan 37(1):91–97

    Google Scholar 

  • Ding D, Muthuswamy S, Meier I (2012) Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol Biol 79(3):203–216

    Article  CAS  PubMed  Google Scholar 

  • Dorn A, Puchta H (2019) DNA Helicases as Safekeepers of genome stability in plants. Genes 10(12):1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duraisamy GS, Mishra AK, Kocabek T, Matousek J (2016) Identification and characterization of promoters and cis-regulator elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L). Comput Biol Chem 64:346–352

    Article  CAS  PubMed  Google Scholar 

  • Dvořák Tomaštíková E, Rutten T, Dvořák P, Tugai A, Ptošková K, Petrovská B et al (2020) Functional divergence of microtubule-associated TPX2 family members in Arabidopsis thaliana. Int J Mol Sci 21(6):2183

    Article  PubMed  PubMed Central  Google Scholar 

  • Fache V, Gaillard J, Van Damme D, Geelen D, Neumann E, Stoppin-Mellet V et al (2010) Arabidopsis kinetochore fiber-associated MAP65-4 cross-links microtubules and promotes microtubule bundle elongation. Plant Cell 22(11):3804–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(D1):D808-D815

  • Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L et al (2020) The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168(1):98–117

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S Am 109(29):11872–11877

  • Guo LB, Ho CMK, Kong ZS, Lee YRJ, Qian Q, Liu B (2009) Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot 103(3):387–402

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H et al (2013) The draft genome of watermelon (citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Guo YP, Shi JJ, Zhou MQ, Yu Y, Wang C (2020) Drought and salt tolerance analysis of BpbZIP1 gene in birch and ABRE element binding identification. For Res 33(5):68–76

    Google Scholar 

  • Ho CM, Lee YR, Kiyama LD, Dinesh-Kumar SP, Liu B (2012) Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain. Plant Cell 24(5):2071–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honghe S, Shan W, Guoyu Z, Chen J, Shaogui G et al (2018) Karyotype stability and unbiased fractionation in the paleo-allotetraploid cucurbita genomes. Mol Plant 10(10):1293–1306

    Google Scholar 

  • Hornikova L, Brustikova K, Forstova J (2020) Microtubules in Polyomavirus Infection. Viruses-Basel 12(1):121

    Article  CAS  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50(6):915–924

    Article  CAS  PubMed  Google Scholar 

  • Jiang CJ, Sonobe S (1993) Identification and preliminary characterization of a 65-kDa higher-plant microtubule-associated protein. J Cell Sci 105:891–901

    Article  CAS  Google Scholar 

  • Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5(6):1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Kollarova E, Forero AB, Stillerova L, Prerostova S, Cvrckova F (2020) Arabidopsis Class II formins AtFH13 and AtFH14 can form heterodimers but exhibit distinct patterns of cellular localization. Int J Mol Sci 21(1):348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Li H, Huang W, Xu Y, Zhou Q, Wang S et al (2019) A chromosome-scale genome assembly of cucumber (cucumis sativus L.). GigaScience 8(6):giz072

  • Li H, Sun BJ, Sasabe M, Deng XG, Machida Y, Lin HH et al (2017) Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytol 215(1):187–201

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zeng X, Liu ZQ, Meng QT, Yuan M, Mao TL (2009) Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer. Plant Mol Biol 69(3):313–324

    Article  CAS  PubMed  Google Scholar 

  • Liu ZQ, Shi LP, Yang S, Qiu SS, Ma XL, Cai JS et al (2021) A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. Mol Plant Pathol 22(1):3–18

    Article  CAS  PubMed  Google Scholar 

  • Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL (2011) Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell 23(5):1889–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao T, Jin L, Li H, Liu B, Yuan M (2005) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138(2):654–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng QT, Du JZ, Li JJ, Lu XM, Zeng XA, Yuan M et al (2010) Tobacco microtubule-associated protein, MAP65-1c, bundles and stabilizes microtubules. Plant Mol Biol 74(6):537–547

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Huang JQ, Balasubramanian MK (2014) The yeast actin cytoskeleton. FEMS Microbiol Rev 38(2):213–227

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14(5):412–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa-Yokoi A, Yamaguchi N (2018) Gene expression and transcription factor binding tests using mutated-promoter reporter lines. Methods Mol Biol (Clifton, N.J.) 1830:291–305

  • Parrotta L, Faleri C, Cresti M, Cai G (2017) Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L. Protoplasma 254(4):1591–1605

    Article  CAS  PubMed  Google Scholar 

  • Portran D, Zoccoler M, Gaillard J, Stoppin-Mellet V, Neumann E, Arnal I et al (2013) MAP65/Ase1 promote microtubule flexibility. Mol Biol Cell 24(12):1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose AB, Elfersi T, Parra G, Korf I (2008) Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20(3):543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasabe M, Machida Y (2006) MAP65: a bridge linking a MAP kinase to microtubule turnover. Curr Opin Plant Biol 9(6):563–570

    Article  CAS  PubMed  Google Scholar 

  • Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L et al (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119(15):3227–3237

    Article  CAS  PubMed  Google Scholar 

  • Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S et al (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: Molecular analysis of its microtubule bundling activity. Plant Cell 16(8):2035–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soga K, Kotake T, Wakabayashi K, Hoson T (2012) Changes in the transcript levels of microtubule-associated protein MAP65-1 during reorientation of cortical microtubules in azuki bean epicotyls. Acta Physiol Plant 34(2):533–540

    Article  CAS  Google Scholar 

  • Stoppin-Mellet V, Fache V, Portran D, Martiel JL, Vantard M (2013) MAP65 coordinate microtubule growth during bundle formation. PLoS One 8(2):e56808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struk S, Dhonukshe P (2014) MAPs: cellular navigators for microtubule array orientations in Arabidopsis. Plant Cell Rep 33(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G (2020) The cytoskeleton and its role in determining cellulose microfibril angle in secondary cell walls of woody tree species. Plants-Basel 9(1):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavrdova T, Krenek P, Ovecka M, Samajova O, Flokova P, Illesova P et al (2020) Complementary superresolution visualization of composite plant microtubule organization and dynamics. Front Plant Sci 11:693

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zhang LJ, Huang RD (2011) Cytoskeleton and plant salt stress tolerance. Plant Signal Behav 6(1):29–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XF, Mao TL (2019) Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. Curr Opin Plant Biol 52:86–96

    Article  CAS  PubMed  Google Scholar 

  • Wicker-Planquart C, Stoppin-Mellet V, Blanchoin L, Vantard M (2004) Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules. Plant J 39(1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Shamimuzzaman M, Sun H, Salse J, Sui X et al (2017) The bottle gourd genome provides insights into cucurbitaceae evolution and facilitates mapping of a papaya ring-spot virus resistance locus. Plant J 92(5):963–975

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Xu Y, Wang J, Liu W, Zhang Z (2019) The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nat Commun 10(1):5158

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu GX, Guo CC, Shan HY, Kong HZ (2012) Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA 109(4):1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J et al (2015) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66(19):5997–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang BJ, Wendrich JR, De Rybel B, Weijers D, Xue HW (2020) Rice microtubule-associated protein IQ67-DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics. Plant Biotechnol J 18(5):1141–1152

    Article  CAS  PubMed  Google Scholar 

  • Zhang HC, Deng XG, Sun BJ, Van SL, Kang ZS, Lin HH et al (2018) Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis. Nature Plants 4(7):485–494

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Lin F, Mao TL, Nie JN, Yan M, Yuan M et al (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24(11):4555–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H et al (2016) CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108:478–487

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Chen Z, Liu X, Che G, Zhang X (2017) Cslfy is required for shoot meristem maintenance via interaction with wuschel in cucumber (Cucumis sativus). New Phytol 218(1):344–356

    Article  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 3200180213 and No. 31972478), the China Agriculture Research System (NO. CARS-23) and the Key Research and Development Program of Ningxia (2021BBF02005).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and Y.Q.T conceived and designed the experiments; M.T.L, T.T.J, X.Y.W, and S.H.L performed the experiments and collected the data; M.T.L executed the data analyses; all authors contributed to the interpretation of the results; M.T.L, S.M., Y.Q.T, and L.H.G. wrote the manuscript.

Corresponding authors

Correspondence to Si Ma or Yongqiang Tian.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

No conflict of interest in this research work.

Additional information

Communicated by: Izabela Pawłowicz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 502 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Ji, T., Wang, X. et al. Comprehensive analyses of microtubule-associated protein MAP65 family genes in Cucurbitaceae and CsaMAP65s expression profiles in cucumber. J Appl Genetics 64, 393–408 (2023). https://doi.org/10.1007/s13353-023-00761-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-023-00761-z

Keywords

Navigation