Skip to main content
Log in

Copy number variation of bovine SHH gene is associated with body conformation traits in Chinese beef cattle

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Sonic Hedgehog (Shh) regulates many key developmental processes during vertebrate limb development, fat formation, and skeletal tissue regeneration. Current whole genome sequencing data have identified a copy number variation mapping to bovine Sonic Hedgehog gene (SHH-CNV). The object of this study was to characterize the SHH-CNV distributions in 648 individuals from 11 Chinese cattle populations and further to investigate the associations of the copy number changes with gene expression and cattle growth traits. The SHH-CNV showed a high variance within Chinese indigenous yellow cattle. Compared to yak and dairy cattle, the beef cattle like Luxi and Xianan breed had significantly higher median copy numbers, suggesting the diversity of SHH-CNV in beef cattle selections. The negative correlation of SHH-CNV with SHH transcriptional level in adult adipose tissue (P < 0.01) indicated the dosage effects of SHH-CNV related to bovine fat formation. Association analysis of SHH-CNV and body size traits was conducted in five breeds. The results revealed that the copy number gain type of SHH-CNV exhibited significantly better chest depth in 24 months old Qinchuan cattle, and better body weight, body length, and chest girth in 18 months old Nanyang cattle, whereas the normal copy number had superior chest girth and body weight in adult Jinnan cattle (P < 0.05 or P < 0.01). In summary, this research uncovered meaningful effects of SHH-CNV on gene expression and cattle phenotypic traits, indicating its potential applications for genetic improvement of beef cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bae JS, Cheong HS, Kim LH, NamGung S, Park TJ, Chun JY, Kim JY, Pasaje CF, Lee JS, Shin HD (2010) Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genomics 11:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:a008342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF (2012) Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 22:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, Song J, Garcia JF, Sonstegard TS, Van Tassell CP, Schnabel RD, Taylor JF, Lewin HA, Liu GE (2016) Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res 23:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutton C, Poreau B, Devillard F, Durand C, Odent S, Rozel C, Vieville G, Amblard F, Jouk PS, Satre V (2014) Currarino syndrome and HPE microform associated with a 2.7-Mb deletion in 7q36.3 excluding SHH gene. Mol Syndromol 5:25–31

    CAS  PubMed  Google Scholar 

  • Dervishi E, Serrano C, Joy M, Serrano M, Rodellar C, Calvo JH (2011) The effect of feeding system in the expression of genes related with fat metabolism in semitendinous muscle in sheep. Meat Sci 89:91–97

    Article  CAS  PubMed  Google Scholar 

  • Gilbert R, Bailey D, Shannon N (1993) Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J Anim Sci 71:1712–1720

    Article  CAS  PubMed  Google Scholar 

  • Goshu HA, Wu X, Chu M, Bao P, Ding X, Yan P (2018) Copy number variations of KLF6 modulate gene transcription and growth traits in Chinese Datong Yak (Bos Grunniens). Animals 8:145

    Article  PubMed Central  Google Scholar 

  • Guryev V, Saar K, Adamovic T, Verheul M, van Heesch SA, Cook S, Pravenec M, Aitman T, Jacob H, Shull JD, Hubner N, Cuppen E (2008) Distribution and functional impact of DNA copy number variation in the rat. Nat Genet 40:538–545

    Article  CAS  PubMed  Google Scholar 

  • Hall TMT, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91:85–97

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Davies GE (2009) Berberine increases expression of GATA-2 and GATA-3 during inhibition of adipocyte differentiation. Phytomedicine 16:864–873

    Article  CAS  PubMed  Google Scholar 

  • Huang B-l, Mackem S (2014) Evolutionary developmental biology: use it or lose it. Nature 511:34–35

    Article  CAS  PubMed  Google Scholar 

  • James AW, Leucht P, Levi B, Carre AL, Xu Y, Helms JA, Longaker MT (2010) Sonic Hedgehog influences the balance of osteogenesis and adipogenesis in mouse adipose-derived stromal cells. Tissue Eng A 16:2605–2616

    Article  CAS  Google Scholar 

  • Justel A, Peña D, Zamar R (1997) A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat Probab Lett 35:251–259

    Article  Google Scholar 

  • Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76:8–32

    Article  CAS  PubMed  Google Scholar 

  • Knezevic SZ, Streibig JC, Ritz C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840–848

    Article  Google Scholar 

  • Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, Mitra A, Alexander LJ, Coutinho LL, Dell’Aquila ME (2010) Analysis of copy number variations among diverse cattle breeds. Genome Res 20:693–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Li B, Huang Y, Yang M, Lan X, Lei C, Qu W, Bai Y, Chen H (2016) Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits. Livest Sci 194:44–50

    Article  Google Scholar 

  • Liu M, Zhou Y, Rosen BD, Van Tassell CP, Stella A, Tosser-Klopp G, Rupp R, Palhiere I, Colli L, Sayre B, Crepaldi P, Fang L, Meszaros G, Chen H, Liu GE, Consortium AD (2018) Diversity of copy number variation in the worldwide goat population. Heredity (Edinb), 1

  • Logan J, Logan JM, Edwards KJ, Saunders NA (2009) Real-time PCR: current technology and applications. Horizon Scientific Press, Poole

    Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

    Article  CAS  PubMed  Google Scholar 

  • McDaneld TG, Kuehn LA, Thomas MG, Pollak EJ, Keele JW (2014) Deletion on chromosome 5 associated with decreased reproductive efficiency in female cattle. J Anim Sci 92:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, Lam HY, Leng J, Li R, Li Y, Lin CY, Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, Scally A, Shi X, Stromberg MP, Stutz AM, Urban AE, Walker JA, Wu J, Zhang Y, Zhang ZD, Batzer MA, Ding L, Marth GT, McVean G, Sebat J, Snyder M, Wang J, Ye K, Eichler EE, Gerstein MB, Hurles ME, Lee C, McCarroll SA, Korbel JO, Genomes P (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullenbach R, Lagoda PJ, Welter C (1989) An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet 5:391

    CAS  PubMed  Google Scholar 

  • Nanni L, Ming JE, Bocian M, Steinhaus K, Bianchi DW, Die-Smulders C, Giannotti A, Imaizumi K, Jones KL, Campo MD, Martin RA, Meinecke P, Pierpont ME, Robin NH, Young ID, Roessler E, Muenke M (1999) The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Okamura M, Kudo H, Wakabayashi K-i, Tanaka T, Nonaka A, Uchida A, Tsutsumi S, Sakakibara I, Naito M, Osborne TF (2009) COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis. Proc Natl Acad Sci 106:5819–5824

    Article  PubMed  PubMed Central  Google Scholar 

  • Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, Zhang X, Knauf C, Cani PD, Aumayr K, Todoric J (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–160

    Article  CAS  PubMed  Google Scholar 

  • Roessler E, Ward DE, Gaudenz K, Belloni E, Scherer SW, Donnai D, Siegel-Bartelt J, Tsui L-C, Muenke M (1997) Cytogenetic rearrangements involving the loss of the Sonic Hedgehog gene at 7q36 cause holoprosencephaly. Hum Genet 100:172–181

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617

    Article  CAS  PubMed  Google Scholar 

  • Spinella-Jaegle S, Rawadi G, Kawai S, Gallea S, Faucheu C, Mollat P, Courtois B, Bergaud B, Ramez V, Blanchet AM (2001) Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 114:2085–2094

    CAS  PubMed  Google Scholar 

  • Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao X, Moore SS (2011) Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics 12:559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM (2006) Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 3:25–34

    Article  CAS  PubMed  Google Scholar 

  • te Welscher P, Zuniga A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, Zeller R (2002) Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298:827–830

    Article  CAS  Google Scholar 

  • Xu L, Hou Y, Bickhart DM, Zhou Y, Hay el HA, Song J, Sonstegard TS, Van Tassell CP, Liu GE (2016) Population-genetic properties of differentiated copy number variations in cattle. Sci Rep 6:23161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Jiang Y, Shi T, Cai H, Lan X, Zhao X, Plath M, Chen H (2017) Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One 12:e0183921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Lv J, Zhang L, Li M, Zhou Y, Lan X, Lei C, Chen H (2017) Association study and expression analysis of CYP4A11 gene copy number variation in Chinese cattle. Sci Rep 7:46599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue XP, Chang TC, DeJarnette JM, Marshall CE, Lei CZ, Liu WS (2013) Copy number variation of PRAMEY across breeds and its association with male fertility in Holstein sires. J Dairy Sci 96:8024–8034

    Article  CAS  PubMed  Google Scholar 

  • Yue X-P, Dechow C, Chang T-C, DeJarnette JM, Marshall CE, Lei C-Z, Liu W-S (2014) Copy number variations of the extensively amplified Y-linked genes, HSFY and ZNF280BY, in cattle and their association with male reproductive traits in Holstein bulls. BMC Genomics 15:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Jia S, Yang M, Xu Y, Li C, Sun J, Huang Y, Lan X, Lei C, Zhou Y (2014) Detection of copy number variations and their effects in Chinese bulls. BMC Genomics 15:480

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Utsunomiya YT, Xu L, Hay el HA, Bickhart DM, Alexandre PA, Rosen BD, Schroeder SG, Carvalheiro R, de Rezende Neves HH, Sonstegard TS, Van Tassell CP, Ferraz JB, Fukumasu H, Garcia JF, Liu GE (2016) Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus. BMC Genomics 17:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Yao Xu’s help in providing the RNA sample for tissues of QC cattle and the guidance for designing this research. We acknowledge Dr. Shaoqiang Wang’s help in providing the DNA sample for YAK population. We acknowledge Dr. Xinglei Qi’s help in sampling the blood sample for Xianan cattle. We acknowledge Dr. Shijun Li’s help in association analysis.

Funding

This study was funded by the National Natural Science Foundation of China (No. 31772574) and the Program of National Beef Cattle and Yak Industrial Technology System (CARS-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The China Council on Animal Care and the Experimental Animal Management Committee of Northwest A&F University approved the procedures and protocols of all experiments in this study.

Consent for publication

Written consent was obtained for use of all animal data.

Additional information

Communicated by: Maciej Szydlowski

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure S1

Correlations between the SHH-CNV and associated body traits in QC and NY cattle. The SHH-CNV was positively associated with chest depth of QC cattle aged 24 months (A. r = 0.19, P = 0.13) and positively associated with chest girth (B. r = 0.24, P = 0.05), body length (C. r = 0.19, P = 0.14), and body weight (D. r = 0.29, P = 0.02) of NY cattle aged 18 months (DOCX 307 kb)

Supplementary Figure S2

Pairwise Pearson correlation coefficients for the body conformation and growth traits in QC (A, 24 months old; B, 36 months old), NY (C, 18 months old; D, 24 months old), and JN (E, 24 months old) breeds (DOCX 5270 kb)

Supplementary Figure S3

Expression profiling of SHH gene in three periods of Qinchuan cattle. The mRNA levels of SHH gene in tissues of fetal (A), calf and adult (B) cattle were normalized to the housekeeping gene (GAPDH); the kidney group in each stage was selected as the control group. Error bars represents standard deviations of three different biological replicates (DOCX 181 kb)

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, B., Shi, T. et al. Copy number variation of bovine SHH gene is associated with body conformation traits in Chinese beef cattle. J Appl Genetics 60, 199–207 (2019). https://doi.org/10.1007/s13353-019-00496-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-019-00496-w

Keywords

Navigation