Skip to main content

Advertisement

Log in

Highly thermostable RadA protein from the archaeon Pyrococcus woesei enhances specificity of simplex and multiplex PCR assays

  • Microbial Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The radA gene of the hyperthermophilic archaeon Pyrococcus woesei (Thermococcales) was cloned and overexpressed in Escherichia coli. The 1050-bp gene codes for a 349-amino-acid polypeptide with an M r of 38,397 which shows 100 % positional amino acid identity to Pyrococcus furiosus RadA and 27.1 % to the E. coli RecA protein. Recombinant RadA was overproduced in Escherichia coli as a His-tagged fusion protein and purified to electrophoretic homogeneity using a simple procedure consisting of ammonium sulfate precipitation and metal-affinity chromatography. In solution RadA exists as an undecamer (11-mer). The protein binds both to ssDNA and dsDNA. RadA has been found to be highly thermostable, it remains almost unaffected by a 4-h incubation at 94 °C. The addition of the RadA protein to either simplex or multiplex PCR assays, significantly improves the specificity of DNA amplification by eliminating non-specific products. Among applications tested the RadA protein proved to be useful in allelic discrimination assay of HADHA gene associated with long-chain 3-hydroxylacyl-CoA dehydrogenase deficiency that in infancy may lead to hypotonia, serious heart and liver problems and even sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chakrabarti R, Schutt CE (2001) The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Res 29:2377–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti R, Schutt CE (2002) Novel sulfoxides facilitate GC-rich template amplification. Biotechniques 32:866–874

    CAS  PubMed  Google Scholar 

  • Cox MM, Lehman IR (1981) RecA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc Natl Acad Sci U S A 78:3433–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demeke T, Adams RP (1992) The effects of plant polysaccharides and buffer additives on PCR. Biotechniques 12:332–334

    CAS  PubMed  Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem 5:144–151

    Article  CAS  Google Scholar 

  • DiRuggiero J, Robb FT (2004) Early evolution of DNA repair mechanisms. In Ribas de Pouplana L (ed),The genetic code and th origin of life, Kluwer,Dordrecht, pp. 169–182

  • DiRuggiero J, Brown JR, Bogert AP, Robb FT (1999) DNA Repair systems in Archaea: mementos from the last universal common ancestor. J Mol Evol 49:474–484

    Article  CAS  PubMed  Google Scholar 

  • Ferrin LJ, Camerini-Otero RD (1991) Sequence-specific ligation of DNA using RecA protein. Science 254:1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Furmanek-Blaszk B, Boratynski R, Zolcinska N, Sektas M (2009) M1.MboII and M2.MboII type IIS methyltransferases: different specificities, the same target. Microbiology 155:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci U S A 98:7928–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Kanoksilapatham W, Gonzales JM, Maeder DL, DiRuggiero J, Robb FT (2004) A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei. Archaea 1:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlin S, Brocchieri L (1996) Evolutionary conservation of recA genes in relation to protein structure and function. J Bacteriol 178:1881–1894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y (2000a) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275:33782–33790

    Article  CAS  PubMed  Google Scholar 

  • Komori K, Miyata T, Daiyasu H, Toh H, Shinagawa H, Ishino Y (2000b) Domain analysis of an archaeal RadA protein for the strand exchange activity. J Biol Chem 275:33791–33797

    Article  CAS  PubMed  Google Scholar 

  • Koob MD, Burkiewicz A, Kur J, Szybalski W (1992) RecA-AC single-site cleavage of plasmids and chromosomes at any predetermined restriction site. Nucleic Acid Res 20:5831–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovárová M, Dráber P (2000) New specificity and yield enhancer of polymerase chain reactions. Nucleic Acids Res 28:e70

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li M, Lin YC, Wu CC, Liu HS (2005) Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res 33:e184

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes A, Amarir-Bouhram J, Faure G, Petit MA, Guerois R (2010) Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res 38:3952–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews BW, Nicholson H, Becktel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A 84:6663–6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti T, Koons B, Budowle B (1998) Enhancement of PCR amplification yield and specificity using AmpliTaq Gold DNA polymerase. Biotechniques 25:716–722

    CAS  PubMed  Google Scholar 

  • Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I (2006) Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J Mol Diagn 8:544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Shinohara A, Nabetani A, Ikeya T, Yu X, Egelman EH, Ogawa H (1993) RecA-like recombination proteins in eukaryotes: function and structures of RAD51 genes. Cold Spring Harbor Symp Quant Biol 58:567–576

    Article  CAS  PubMed  Google Scholar 

  • Piekutowska-Abramczuk D, Olsen RKJ, Wierzba J, Popowska E, Jurkiewicz D, Ciara E, Ołtarzewski M, Gradowska W, Sykut-Cegielska J, Krajewska-Walasek M, Andresen BS, Gregersen N, Pronicka E (2010) A comprehensive HADHA c.1528G > C frequency study reveals high prevalence of long-chain 3-hydroxylacyl-CoA dehydrogenase deficiency in Poland. J Inherit Metab Dis 33:S373–S377

    Article  PubMed  Google Scholar 

  • Plotka M, Kaczorowska AK, Stefanska A, Morzywolek A, Fridjonsson OH, Dunin-Horkawicz S, Kozlowski L, Hreggvidsson GO, Kristjansson JK, Dabrowski S, Bujnicki JM, Kaczorowski T (2014) Novel highly thermostable endolysin from Thermus scotoductus MAT2119 bacteriophage Ph2119 with amino acid sequence similarity to eukaryotic peptidoglycan recognition proteins. Appl Environ Microbiol 80:886–895

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralser M, Querfurth R, Warnatz H, Lehrach H, Yaspo M, Krobitsch S (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347:747–751

    Article  CAS  PubMed  Google Scholar 

  • Rees WA, Yager TD, Korte J, von Hippel PH (1993) Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32:137–144

    Article  CAS  PubMed  Google Scholar 

  • Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Weiss RB, Dunn DM (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134–157

    Article  CAS  PubMed  Google Scholar 

  • Rocchicciolo F, Wanders RJA, Aubourg P, Vianey-Liaud C, Ijlst L, Fabre M, Cartier N, Bougneres PF (1990) Deficiency of long-chain 3-hydroxylacyl-CoA dehydrogenase: a cause of lethal myopathy and cardiomyopathy in early childhood. Pediatr Res 28:657–662

    Article  Google Scholar 

  • Sahdev S, Saini S, Tiwari P, Saxena S, Singh Saini K (2007) Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions. Mol Cell Probes 21:303–307

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich KA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Sandler SJ, Satin LH, Samra HS, Clark AJ (1996) recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 24:2125–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC (1998) RadA protein is an archeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev 12:1248–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigemori Y, Oishi M (2005) Specific cleavage of DNA molecules at RecA-mediated triple-strand structure. Nucleic Acids Res 32:e4

    Article  Google Scholar 

  • Shigemori Y, Mikawa T, Shibata T, Oishi M (2005) Multiplex PCR: use of heat-stable Thermus thermophilus RecA protein to minimize non-specific PCR products. Nucleic Acids Res 33:e126

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiess AN, Mueller N, Ivell R (2004) Trehalose is a potent PCR enhancer: Lowering of DNA melting temperature and thermal stabilization of Taq polymerase by the disaccharide trehalose. Clin Chem 50:1256–1259

    Article  CAS  PubMed  Google Scholar 

  • Stefanska A, Kaczorowska AK, Plotka M, Fridjonsson OH, Hreggvidsson GO, Hjorleifsdottir S, Kristjansson J, Dabrowski S, Kaczorowski T (2014) Discovery and characterization of RecA protein of thermophilic bacterium Thermus thermophilus MAT72 phage Tt72 that increases specificity of a PCR based DNA amplification. J Biotechnol 182–183:1–10

    Article  PubMed  Google Scholar 

  • Story RM, Weber IT, Steitz TA (1992) The structure of the E. coli RecA protein monomer and polymer. Nature 355:318–325

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemori T, Ishino Y, Toh H, Asada K, Kato I (1993) Organization and nucleotide sequence of the DNA polymerase gene from the archeon Pyrococcus furiosus. Nucleic Acids Res 21:259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varadaraj K, Skinner DM (1994) Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases. Gene 140:1–5

    Article  CAS  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker J, Saraste M, Runswick M, Gay N (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wanarska M, Krawczyk B, Hildebrandt P, Kur J (2011) RecA Proteins from Deinococcus geothermalis and Deinococcus murrayi - cloning, purification and biochemical characterisation. BMC Mol Biol 12:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanders RJA, Duran M, Ijlst L, De Jager JP, Van Gennip AH, Jakobs C, Dorland L, Van Sprang FJ (1989) Sudden infant death and long-chain 3-hydroxylacyl –CoA dehydrogenase. Lancet 334:52–53

    Article  Google Scholar 

  • Weinstock GM, McEntee K, Lehman IR (1979) ATP-dependent renaturation of DNA catalyzed by the RecA protein of Escherichia coli. Proc Natl Acad Sci U S A 76:126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4:337–348

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yang X, Meng L, Liu F, Shen C, Yang W (2009) Enhanced amplification of GC-rich DNA with two organic reagents. Biotechniques 47:775–779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of Department of Microbiology and A&A Biotechnology for their support for this study.

This work was supported by funding from the European Union’s Seventh Framework Programme managed by REA, Research Executive Agency http://ec.europa.eu/research/rea ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement no 286556 to the EXGENOME project (Exgenome Molecular Enzymes).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Kaczorowski.

Additional information

Communicated by: Agnieszka Szalewska-Palasz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanska, A., Gaffke, L., Kaczorowska, AK. et al. Highly thermostable RadA protein from the archaeon Pyrococcus woesei enhances specificity of simplex and multiplex PCR assays. J Appl Genetics 57, 239–249 (2016). https://doi.org/10.1007/s13353-015-0314-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-015-0314-5

Keywords

Navigation