Skip to main content
Log in

Joint Effect of East Asia-Pacific and Eurasian Teleconnections on the Summer Precipitation in North Asia

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The East Asia-Pacific (EAP) and Eurasian (EU) teleconnections are independent of each other on the seasonal timescale (with a correlation coefficient of only 0.03). But they may occur concurrently with consistent or opposite phases. This paper investigates their synergistic effect on the summer precipitation in North Asia. Based on the signs/phases of EAP and EU indices, the EAP and EU teleconnection anomalies occur in four cases: (I) positive EAP + positive EU, (II) negative EAP + negative EU, (III) positive EAP + negative EU, and (IV) negative EAP + positive EU. Further analyses show that these four configurations of EAP and EU anomalies are coherently related to different atmospheric circulations over the midlatitude Eurasian continent, leading to different summer precipitation modes in North Asia. Category I (II) corresponds to a zonal tripole structure of the geopotential height at 500 hPa over eastern Europe and the Sea of Japan, leading to less (more) than normal precipitation in eastern Europe, Japan, and the surrounding areas, and more (less) precipitation from central China to Lake Baikal and eastern Russia. Category III (IV) corresponds to a meridional dipole structure of the geopotential height at 500 hPa over North Asia, leading to more (less) precipitation in the northern North Asia and less (more) precipitation in most of the southern North Asia. Independent analysis reveals that the EAP teleconnection itself is positively correlated with the precipitation in the region between the eastern part of Lake Baikal and Okhotsk Sea, and negatively correlated with the precipitation in the region between Northeast China and Japan. Coincidently, the EU pattern and precipitation have negative correlations in Ural Mountain and Okhotsk Sea areas and positive correlations in the Lake Baikal area. The respective relations of EAP and EU with the summer precipitation in North Asia suggest that the EAP northern lobe overlapped with the EU central and eastern lobes could extend the geopotential anomalies over Lake Baikal to Russian Far East, creating an EAP-EU synergistic effect on the summer precipitation in North Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126, doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial pacific. Mon. Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Google Scholar 

  • Bueh, C., N. Shi, L. R. Ji, et al., 2008: Features of the EAP events on the medium-range evolution process and the mid-and high-latitude Rossby wave activities during the Meiyu period. Chinese Sci. Bull., 53, 610–623, doi: 10.1007/s11434-008-0005-2.

    Google Scholar 

  • Chen, G. S., and G. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Climate, 25, 7834–7851, doi: 10.1175/jcli-d-11-00684.1.

    Google Scholar 

  • Chen, Y., and P. M. Zhai, 2015: Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart. J. Roy. Meteor. Soc., 141, 1389–1403, doi: 10.1002/qj.2448.

    Google Scholar 

  • Chen, Y., P. M. Zhai, Z. Liao, et al., 2019: Persistent precipitation extremes in the Yangtze River Valley prolonged by opportune configuration among atmospheric teleconnections. Quart. J. Roy. Meteor. Soc., 145, 2603–2626, doi: 10.1002/qj.3581.

    Google Scholar 

  • Dogar, M. M., F. Kucharski, and S. Azharuddin, 2017: Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM. J. Earth Syst. Sci., 126, 30, doi: 10.1007/s12040-017-0804-4.

  • Fan, K., and H. J. Wang, 2004: Antarctic oscillation and the dust weather frequency in North China. Geophys. Res. Lett., 31, L10201, doi: 10.1029/2004gl019465.

  • Gong, Z. Q., M. M. A. Dogar, S. B. Qiao, et al., 2017: Limitations of BCC_CSM’s ability to predict summer precipitation over East Asia and the Northwestern Pacific. Atmos. Res., 193, 184–191, doi: 10.1016/j.atmosres.2017.04.016.

    Google Scholar 

  • Gong, Z. Q., M. M. Dogar, S. B. Qiao, et al., 2018a: Assessment and correction of BCC_CSM’s performance in capturing leading modes of summer precipitation over North Asia. Int. J. Climatol., 38, 2201–2214, doi: 10.1002/joc.5327.

    Google Scholar 

  • Gong, Z. Q., G. L. Feng, M. M. Dogar, et al., 2018b: The possible physical mechanism for the EAP-SR co-action. Climate Dyn., 51, 1499–1516, doi: 10.1007/s00382-017-3967-4.

    Google Scholar 

  • Grotjahn, R., R. Black, R. Leung, et al., 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 1151–1184, doi: 10.1007/s00382-015-2638-6.

    Google Scholar 

  • Hingmire, D., R. K. Vellore, R. Krishnan, et al., 2019: Widespread fog over the Indo-Gangetic Plains and possible links to boreal winter teleconnections. Climate Dyn., 52, 5477–5506, doi: 10.1007/s00382-018-4458-y.

    Google Scholar 

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    Google Scholar 

  • Huang, G., 2004: An index measuring the interannual variation of the East Asian summer monsoon—The EAP index. Adv. Atmos. Sci., 21, 41–52, doi: 10.1007/bf02915679.

    Google Scholar 

  • Huang, J. P., Y. H. Yi, S. W. Wang, et al., 1993: An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution. Quart. J. Roy. Meteor. Soc., 119, 547–565, doi: 10.1002/qj.49711951111.

    Google Scholar 

  • Huang, R. H., and W. J. Li, 1987: Influence of the heat source anomaly over the tropical western Pacific on the subtropical high over East Asia. Proc. Int. Conf. on the General Circulation of East Asia, Chengdu, China, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40–51.

    Google Scholar 

  • Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243–256, doi: 10.2151/jmsj1965.70.1B_243.

    Google Scholar 

  • Huang, R. H., J. L. Chen, and G. Huang, 2007: Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv. Atmos. Sci., 24, 993–1023, doi: 10.1007/s00376-007-0993-x.

    Google Scholar 

  • Huang, R. H., J. L. Chen, L. Wang, et al., 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910–942, doi: 10.1007/s00376-013-0001-6.

    Google Scholar 

  • Kornhuber, K., V. Petoukhov, S. Petri, et al., 2017: Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer. Climate Dyn., 49, 1961–1979, doi: 10.1007/s00382-016-3399-6.

    Google Scholar 

  • Kosaka, Y., H. Nakamura, M. Watanabe, et al., 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561–580, doi: 10.2151/jmsj.87.561.

    Google Scholar 

  • Lee, E. J., J. G. Jhun, and C. K. Park, 2005: Remote connection of the Northeast Asian summer rainfall variation revealed by a newly defined monsoon index. J. Climate, 18, 4381–4393, doi: 10.1175/JCLI3545.1.

    Google Scholar 

  • Li, J., R. C. Yu, and T. J. Zhou, 2008: Teleconnection between NAO and climate downstream of the Tibetan Plateau. J. Climate, 21, 4680–4690, doi: 10.1175/2008JCLI2053.1.

    Google Scholar 

  • Li, J. Y., and J. Y. Mao, 2018: The impact of interactions between tropical and midlatitude intraseasonal oscillations around the Tibetan Plateau on the 1998 Yangtze floods. Quart. J. Roy. Meteor. Soc., 144, 1123–1139, doi: 10.1002/qj.3279.

    Google Scholar 

  • Li, J. Y., and J. Y. Mao, 2019: Coordinated influences of the tropical and extratropical intraseasonal oscillations on the 10-30-day variability of the summer rainfall over southeastern China. Climate Dyn., 53, 137–153, doi: 10.1007/s00382-018-4574-8.

    Google Scholar 

  • Li, L., P. M. Zhai, Y. Chen, et al., 2016: Low-frequency oscillations of the East Asia-Pacific teleconnection pattern and their impacts on persistent heavy precipitation in the Yangtze-Huai River Valley. J. Meteor. Res., 30, 459–471, doi: 10.1007/s13351-016-6024-z.

    Google Scholar 

  • Lin, Z. D., and R. Y. Lu, 2016: Impact of summer rainfall over southern-central Europe on circumglobal teleconnection. Atmos. Sci. Lett., 17, 258–262, doi: 10.1002/asl.652.

    Google Scholar 

  • Liu, Y. Y., L. Wang, W. Zhou, et al., 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 2817–2839, doi: 10.1007/s00382-014-2163-z.

    Google Scholar 

  • Lu, R. Y., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155–165, doi: 10.2151/jmsj.82.155.

    Google Scholar 

  • Lu, R. Y., Y. Li, and B. W. Dong, 2006: External and internal summer atmospheric variability in the western North Pacific and East Asia. J. Meteor. Soc. Japan, 84, 447–462, doi: 10.2151/jmsj.84.447.

    Google Scholar 

  • Mann, M. E., S. Rahmstorf, K. Kornhuber, et al., 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv., 4, eaat3272, doi: 10.1126/sciadv.aat3272.

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390, doi: 10.2151/jmsj1965.65.3_373.

    Google Scholar 

  • Nitta, T., and Z. Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74, 425–445, doi: 10.2151/jmsj 1965.74.4_425.

    Google Scholar 

  • Ogasawara, T., and R. Kawamura, 2007: Combined effects of teleconnection patterns on anomalous summer weather in Japan. J. Meteor. Soc. Japan, 85, 11–24, doi: 10.2151/jmsj.85.11.

    Google Scholar 

  • Ogasawara, T., and R. Kawamura, 2008: Effects of combined teleconnection patterns on the East Asian summer monsoon circulation: Remote forcing from low-and high-latitude regions. J. Meteor. Soc. Japan, 86, 491–504, doi: 10.2151/jmsj.86.491.

    Google Scholar 

  • Srinivas, G., J. S. Chowdary, Y. Kosaka, et al., 2018: Influence of the Pacific-Japan pattern on Indian summer monsoon rainfall. J. Climate, 31, 3943–3958, doi: 10.1175/JCLI-D-17-0408.1.

    Google Scholar 

  • Tachibana, Y., T. Nakamura, and N. Tazou, 2007: Interannual variation in snow-accumulation events in Tokyo and its relationship to the Eurasian pattern. SOLA, 3, 129–132, doi: 10.2151/sola.2007-033.

    Google Scholar 

  • Takaya, K., and H. Nakamura, 2013: Interannual variability of the East Asian winter monsoon and related modulations of the planetary waves. J. Climate, 26, 9445–9461, doi: 10.1175/JCLI-D-12-00842.1.

    Google Scholar 

  • Ueda, H., T. Yasunari, and R. Kawamura, 1995: Abrupt seasonal change of large-scale convective activity over the western Pacific in the northern summer. J. Meteor. Soc. Japan, 73, 795–809, doi: 10.2151/jmsj1965.73.4_795.

    Google Scholar 

  • Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 1577–1588, doi: 10.2151/jmsj.82.1577.

    Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812, doi: 10.1175/1520-0493(1981)109<0784:TITGHF<2.0.CO;2.

    Google Scholar 

  • Wang, H., B. Wang, F. Huang, et al., 2012: Interdecadal change of the boreal summer circumglobal teleconnection (1958-2010). Geophys. Res. Lett., 39, L12704, doi: 10.1029/2012GL052371.

    Google Scholar 

  • Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 2361–2374, doi: 10.1175/JCLI-D-13-00086.1.

    Google Scholar 

  • Wang, L. J., C. Wang, and D. Guo, 2018: Evolution mechanism of synoptic-scale EAP teleconnection pattern and its relationship to summer precipitation in China. Atmos. Res., 214, 150–162, doi: 10.1016/j.atmosres.2018.07.023.

    Google Scholar 

  • Wang, N., and Y. C. Zhang, 2015: Connections between the Eurasian teleconnection and concurrent variation of upper-level jets over East Asia. Adv. Atmos. Sci., 32, 336–348, doi: 10.1007/s00376-014-4088-1.

    Google Scholar 

  • Wen, M., S. Yang, A. Kumar, et al., 2009: An analysis of the largescale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 1111–1131, doi: 10.1175/2008MWR2638.1.

    Google Scholar 

  • Yang, R. W., Y. Tao, and J. Cao, 2010: A mechanism for the interannual variation of the early summer East Asia-Pacific teleconnection wave train. Acta Meteor. Sinica, 24, 452–458.

    Google Scholar 

  • Zhou, T. J., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J. Climate, 22, 1159–1173, doi: 10.1175/2008jcli2245.1.

    Google Scholar 

  • Zhou, W., J. C. L. Chan, W. Chen, et al., 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 3978–3991, doi: 10.1175/2009MWR2952.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Gong.

Additional information

Supported by the National Key Research and Development Program of China (2018YFA0606301 and 2018YFC1507702) and National Natural Science Foundation of China (41875100, 41575082, and 41530531).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Feng, G., Dogar, M.M. et al. Joint Effect of East Asia-Pacific and Eurasian Teleconnections on the Summer Precipitation in North Asia. J Meteorol Res 34, 559–574 (2020). https://doi.org/10.1007/s13351-020-9112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-9112-z

Keywords

Navigation