Skip to main content
Log in

Improved Algorithms for Removing Isolated Non-Meteorological Echoes and Ground Clutters in CINRAD

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Using China New Generation Weather Radar (CINRAD) level-II data, the original algorithms for removing isolated non-meteorological echoes and ground clutters in radar data, which have been applied to Weather Surveillance Radar-1988 Doppler (WSR-88D) in the USA and Severe Weather Automatic Nowcast (SWAN) system in China, are modified and improved. To remove isolated non-meteorological echoes, the new algorithm introduces a constraint parameter (Po) to distinguish whether a window of 5 × 5 points is isolated as external echoes. A statistical analysis of 150 radar scans (5 cases, with each case comprising 30 scans) under three different echo types (small-scale convection, typhoon, and large-scale synoptic system) shows that the constraint parameter Po ⩽ 0.167 is suitable for removing isolated non-meteorological echoes while preserving the edge of meteorological echoes. A new parameter, NDZ, which promotes the ability of the algorithm to identify the ground clutters appearing at two adjacent elevation angles, is constructed based on the vertical continuity of reflectivity. These improved algorithms are tested for four cases (three cases of isolated non-meteorological echoes and one case of ground clutters). Based on the statistics of 232 volume scans of radar data (on a temporal resolution of 1 h) measured at Nanchang station from 0000 UTC 5 to 1600 UTC 14 March 2015, it is found that the improved algorithms not only eliminate most (over 95% under clear-sky conditions) of the isolated non-meteorological echoes and ground clutters (including those appearing at two adjacent elevation angles), but also well preserve the structure of meteorological echoes (storms). Key words: radar, isolated non-meteorological echoes, ground clutter, quality control

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfieri, L., P. Claps, and F. Laio, 2010: Time-dependent Z–R relationships for estimating rainfall fields from radar measurements. Nat. Hazards Earth Sys., 10, 149–158, doi: 10.5194/nhess-10-149-2010.

    Article  Google Scholar 

  • Anagnostou, E. N., and W. F. Krajewski, 1999: Real-time radar rainfall estimation. Part I: Algorithm formulation. J. Atmos. Oceanic Technol., 16, 189–197, doi: 10.1175/1520-0426 (1999)016<0189:RTRREP>2.0.CO;2.

    Google Scholar 

  • Bedka, K. M., C. Wang, R. Rogers, et al., 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 271–590, doi: 10.1175/WAF-D-14-00062.1.

    Article  Google Scholar 

  • Bergen, W. R., and S. C. Albers, 1988: Two-and three-dimensional de-aliasing of Doppler radar velocities. J. Atmos. Oceanic Technol., 5, 305–319, doi: 10.1175/1520-0426(1988)005 <0305:TATDDA>2.0.CO;2.

    Article  Google Scholar 

  • Chrisman, J., D. Rinderknecht, and R. Hamilton, 1995: WSR-88D clutter suppression and its impact on meteorological data interpretation. Preprints, First WSR-88. User’s Conference, Norman, OK, WSR-88. Operational Support Facility, USA, 11–14 October, 9–20.

    Google Scholar 

  • Fabry, F., and J. Gadoury, 2009: Another method for ground target identification and filtering using spectral processing of dual-polarization returns. 34th Conference on Radar Meteorology, Williamsburg, VA, 6 October, Amer. Meteor. Soc.

    Google Scholar 

  • Friedrich, K., M. Hagen and T. Einfalt, 2006: A quality control concept for radar reflectivity, polarimetric parameters, and Doppler velocity. J. Atmos. Oceanic Technol., 23, 865–887, doi: 10.1175/jtech1920.1.

    Article  Google Scholar 

  • Fulton, R. A., J. P. Breidenbach, D. J. Seo, et al., 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377–395, doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    Article  Google Scholar 

  • Gourley, J. J., P. Tabary, and J. Parent du Chatelet, 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24, 1439–1451, doi: 10.1175/jtech2035.1.

    Article  Google Scholar 

  • Hubbert, J. C., M. Dixon, S. M. Ellis, et al., 2009a: Weather radar ground clutter. Part I: Identification, modeling, and simulation. J. Atmos. Oceanic Technol., 26, 1165–1180, doi: 10.1175/2009jtecha1159.1.

    Google Scholar 

  • Hubbert, J. C., M. Dixon, and S. M. Ellis, 2009b: Weather radar ground clutter. Part II: Real-time identification and filtering. J. Atmos. Oceanic Technol., 26, 1181–1197, doi: 10.1175/2009jtecha1160.1.

    Google Scholar 

  • Jones, T. A., D. Stensrud, L. Wicker, et al., 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165–194, doi: 10.1175/mwr-d-14-00180.1.

    Article  Google Scholar 

  • Kessinger, C. K., S. Ellis, J. Van Andel, et al., 2003: The AP clutter mitigation scheme for the WSR-88D. Preprints, 31st Conference on Radar Meteorology, Seattle WA, 6–12 August, Amer. Meteor. Soc., 526–529.

    Google Scholar 

  • Krishnapuram, R., and J. M. Keller, 1993: A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1, 98–110, doi: 10.1109/91.227387.

    Article  Google Scholar 

  • Lakshmanan, V., C. Karstens, J. Krause, et al., 2014: Quality control of weather radar data using polarimetric variables. J. Atmos. Oceanic Technol., 31, 1234–1249, doi: 10.1175/jtech-d-13-00073.1.

    Article  Google Scholar 

  • Liu, L., M. X. Chen, and Y. C. Wang, 2016: Numerical nowcasting experiments for the simulation of a mesoscale convective system using a cloud model and radar data assimilation with 4DVar. Acta Meteor. Sinica, 74, 213–228, doi: 10.11676/qxxb2016.021. (in Chinese)

    Google Scholar 

  • Liu, L. P., L. L. Wu, and Y. M. Yang, 2007: Development of fuzzy-logical two-step ground clutter detection algorithm. Acta Meteor. Sinica, 65, 252–260, doi: 10.3321/j.issn:0577-6619.2007.02.011. (in Chinese)

    Google Scholar 

  • Liu, S.-Y., L.-F. Yan, and J. Sun, 2008: Retrieval of horizontal wind and quality controlling of single Doppler radar data on landing typhoon. J. Trop. Meteor., 24, 105–110, doi: 10.3969/j.issn.1004-4965.2008.02.001. (in Chinese)

    Google Scholar 

  • Pamment, J. A., and B. J. Conway, 1998: Objective identification of echoes due to anomalous propagation in weather radar data. J. Atmos. Oceanic Technol., 15, 98–113, doi: 10.1175/1520-0426(1998)015<0098:oioedt>2.0.co;2.

    Article  Google Scholar 

  • Pan, Y. J., K. Zhao, and Y. N. Pan, 2010: Single-Doppler radar observations of a high precipitation supercell accompanying the 12 April 2003 severe squall line in Fujian province. Acta Meteor. Sinica, 24, 50–65.

    Google Scholar 

  • Qi, Y. C., and J. Zhang, 2017: A physically based two-dimensional seamless reflectivity mosaic for radar QPE in the MRMS system. J. Hydrometeor., 18, 1327–1340, doi: 10.1175/jhm-d-16-0197.1.

    Article  Google Scholar 

  • Qin, Y. Y., J. D. Gong, Z. C. Li, et al, 2014: Assimilation of Doppler radar observations with an ensemble square root filter: A squall line case study. J. Meteor. Res., 28, 230–251, doi: 10.1007/s13351-014-2046-6.

    Article  Google Scholar 

  • Rico-Ramirez, M. A., and I. D. Cluckie, 2008: Classification of ground clutter and anomalous propagation using dual-polarization weather radar. IEEE Trans. Geosci. Remote Sens., 46, 1892–1904, doi: 10.1109/tgrs.2008.916979.

    Article  Google Scholar 

  • Ridal, M., and M. Dahlbom, 2017: Assimilation of multinational radar reflectivity data in a mesoscale model: A proof of concept. J. Appl. Meteor. Climatol., 56, 1739–1751, doi: 10.1175/jamc-d-16-0247.1.

    Article  Google Scholar 

  • Serafin, R. J., and J. W. Wilson, 2000: Operational weather radar in the United States: Progress and opportunity. Bull. Amer. Meteor. Soc., 81, 501–518, doi: 10.1175/1520-0477(2000) 081<0501:owritu>2.3.CO;2.

    Article  Google Scholar 

  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709–727, doi: 10.1175/1520-0493(2000)128 <0709:coleso>2.0.co;2.

    Article  Google Scholar 

  • Steiner, M., and J. A. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673–686, doi: 10.1175/1520-0426(2002)019 <0673:uotdrs>2.0.co;2.

    Article  Google Scholar 

  • Su, T. J., J. X. Ge, and H. B. Zhang, 2018: Review of dual polarization weather radar system development in China. J. Mar. Meteor., 38, 62–68, doi: 10.19513/j.cnki.issn2096-3599.2018. 01.008. (in Chinese)

    Google Scholar 

  • Tang, F., 2011: Quality control of radar reflectivity data and its application to GRAPES 3DVAR. Master dissertation, Nanjing University of Information Science & Technology, China, 48 pp. (in Chinese)

    Google Scholar 

  • Torres, S. M., and D. A. Warde, 2014: Ground clutter mitigation for weather radars using the autocorrelation spectral density. J. Atmos. Oceanic Technol., 31, 2049–2066, doi: 10.1175/jtech-d-13-00117.1.

    Article  Google Scholar 

  • Wang, Y. B., and Y. F. Wan, 2006: Automatic quality control for radar volume-scanning reflectivity fields. Meteor. Sci. Technol., 34, 615–619, doi: 10.3969/j.issn.1671-6345.2006.05. 021. (in Chinese)

    Google Scholar 

  • Wu, T., Y. F. Wan, W. F. Wo, et al., 2013: Design and application of radar reflectivity quality control algorithm in SWAN. Meteor. Sci. Technol., 41, 809–817, doi: 10.3969/j.issn.1671-6345.2013.05.004. (in Chinese)

    Google Scholar 

  • Xiao, Y. J., L. P. Liu, and Y. Shi, 2008: Study of methods for three-dimensional multiple-radar reflectivity mosaics. Acta Meteor. Sinica, 22, 351–361.

    Google Scholar 

  • Xu, M. Y., F. Li, Y. C. Xia, et al., 2017: Analysis of CINRAD radar operation status during 2009–2014. Meteor. Mon., 43, 365–372, doi: 10.7519/j.issn.1000-0526.2017.03.013. (in Chinese)

    Google Scholar 

  • Yang, M. L., L. P. Liu, D. B. Su, et al., 2011: The application of an automated 2-D multi-pass Doppler radar velocity dealiasing and the research of its effect. Meteor. Mon., 37, 203–212, doi: 10.7519/j.issn.1000-0526.2011.2.010. (in Chinese)

    Google Scholar 

  • Yu, X. D., X. P. Yao, T. N. Xiong, et al., 2006. Doppler Weather Radar Principles and Operational Applications. China Meteorological Press, Beijing, 25 pp. (in Chinese)

    Google Scholar 

  • Zhang, J., S. Wang, and B. Clarke, 2004: WSR-88D reflectivity quality control using horizontal and vertical reflectivity structure. Preprints, 11th Conference on Aviation, Range and Aerospace Meteorology, Hyannis, MA, 4–8 October, Amer. Meteor. Soc.

    Google Scholar 

  • Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing threedimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 30–42, doi: 10.1175/jtech-1689.1.

    Article  Google Scholar 

  • Zheng, Y. Y., X. D. Yu, C. Fang, et al., 2004: Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor. Sinica, 62, 317–328, doi: 10.3321/j.issn:0577-6619. 2004.03.006. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers and the editor for their constructive comments, which have certainly helped improve the manuscript from its original version. Dr. Zhiqun Hu provided useful comments and suggestions regarding the received baseband complex signal at the signal-processing level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwen Zhang.

Additional information

Supported by the Jiangxi Provincial Department of Science and Technology project (20171BBG70004), Open Project of the State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences (2016LASW-N11), and National Natural Science Foundation of China (41575098).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Zhang, S., Liang, X. et al. Improved Algorithms for Removing Isolated Non-Meteorological Echoes and Ground Clutters in CINRAD. J Meteorol Res 32, 584–597 (2018). https://doi.org/10.1007/s13351-018-7176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7176-9

Key words

Navigation