Skip to main content
Log in

Evolution of aerosol vertical distribution during particulate pollution events in Shanghai

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A set of micro pulse lidar (MPL) systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011. Three typical particulate pollution events (e.g., haze) were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer (PBL) during these pollution episodes. The aerosol vertical extinction coefficient (VEC) at any given measured altitude was prominently larger during haze periods than that before or after the associated event. Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering, leading to different aerosol vertical distribution structures. Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions. Several peaks in aerosol VECs were found at altitudes above 1 km during the dust- and bioburning-influenced haze events. Aerosol VECs decreased with increasing altitude during the local-polluted haze event, with a single maximum in the surface atmosphere. PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events; subsequently, PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages. The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beniston, M., J. P. Wolf, M. Beniston-Rebetez, et al., 1990: Use of lidar measurements and numerical models in air pollution research. J. Geophys. Res., 95, 9879–9894.

    Article  Google Scholar 

  • Bergamo, A., A. M. Tafuro, S. Kinne, et al., 2008: Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties. Atmos. Chem. Phys., 8, 6995–7014.

    Article  Google Scholar 

  • Boers, R., E. W. Eloranta, and R. L. Coulter, 1984: Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. Meteor., 23, 247–266.

    Article  Google Scholar 

  • Boers, R., and E. W. Eloranta, 1986: Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer. Bound.-Layer Meteor., 34, 357–375.

    Article  Google Scholar 

  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 1092–1105.

    Article  Google Scholar 

  • Campbell, J. R., D. L. Hlavka, J. D. Spinhirne, et al., 1998: Operational cloud boundary detection and analysis from micropulse lidar data. Tucson, Eighth ARM Science Team Meeting, 119–122.

    Google Scholar 

  • Campbell, J. R., D. L. Hlavka, E. J. Welton, et al., 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431–442.

    Article  Google Scholar 

  • Charlson, R. J., J. Langner, H. Rodhe, et al., 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus A, 43, 152–163.

    Article  Google Scholar 

  • Che, H., G. Shi, A. Uchiyama, et al., 2008: Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China. Atmos. Chem. Phys., 8, 3199–3214.

    Article  Google Scholar 

  • Chen Weibo, H. Kuze, A. Uchiyama, et al., 2001: Oneyear observation of urban mixed layer characteristics at Tsukuba, Japan using a micro pulse lidar. Atmos. Environ., 35, 4273–4280.

    Article  Google Scholar 

  • Chen Weinai, F. J. Tsai, C. C. K. Chou, et al., 2007: Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan. Atmos. Environ., 41, 7698–7714.

    Article  Google Scholar 

  • Chen Yonghang, Liu Qiong, Geng Fuhai, et al., 2012: Vertical distribution of optical and micro-physical properties of ambient aerosols during dry haze periods in Shanghai. Atmos. Environ., 50, 50–59.

    Article  Google Scholar 

  • Christopher, S. A., J. Chou, Zhang Jianglong, et al., 2000: Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data. Geophys. Res. Lett., 27, 2197–2200.

    Article  Google Scholar 

  • Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 1233–1247.

    Article  Google Scholar 

  • Deng Xuejiao, Tie Xuexi, Wu Dui, et al., 2008: Longterm trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmos. Environ., 42, 1424–1435.

    Article  Google Scholar 

  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295–308.

    Google Scholar 

  • Duan Haixia, Zhao Jianhua, and Li Yaohui, 2013: The frequencies, severities, and driving factors of the sand-dust weather processes occurred in northern China in the spring of 2011. Journal of Desert Research, 33, 179–186. (in Chinese)

    Google Scholar 

  • Dubovik, O., A. Smirnov, B. N. Holben, et al., 2000: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J. Geophys. Res., 105, 9791–9806.

    Article  Google Scholar 

  • Duzgoren-Aydin, N. S., 2008: Health effects of atmospheric particulates: A medical geology perspective. J. Environ. Sci. Heal. C Environ. Carcinog. Ecotoxicol. Rev., 26, 1–39.

    Article  Google Scholar 

  • Fu Qingyan, Zhuang Guoshun, Wang Jing, et al., 2008: Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ., 42, 2023–2036.

    Article  Google Scholar 

  • Haywood, J. M., V. Ramaswamy, and L. J. Donner, 1997: A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol. Geophys. Res. Lett., 24, 143–146.

    Article  Google Scholar 

  • He, Q. S., J. T. Mao, J. Y. Chen, et al., 2006: Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms. Atmos. Environ., 40, 1064–1077.

    Article  Google Scholar 

  • He Qianshan, Li Chengcai, Mao Jietai, et al., 2008: Analysis of aerosol vertical distribution and variability in Hong Kong. J. Geophys. Res., 113, D14211, doi:10.1029/2008JD009778.

    Article  Google Scholar 

  • He Qianshan, Li Chengcai, Geng Fuhai, et al., 2012: Aerosol optical properties retrieved from sun photometer measurements over Shanghai, China. J. Geophys. Res., 117, D16204, doi: 10.1029/2011JD017220.

    Article  Google Scholar 

  • Holben, B. N., T. F. Eck, I. Slutsker, et al., 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16.

    Article  Google Scholar 

  • Hu Dawei, Qiao Liping, Chen Jianmin, et al., 2010: Hygroscopicity of inorganic aerosols: Size and relative humidity effects on the growth factor. Aerosol Air Qual. Res., 10, 255–264.

    Google Scholar 

  • Huang, K., G. Zhuang, Y. Lin, et al., 2012: Typical types and formation mechanisms of haze in an eastern Asian megacity, Shanghai. Atmos. Chem. Phys., 12, 105–124.

    Article  Google Scholar 

  • Kang, C. M., H. S. Lee, B. W. Kang, et al., 2004: Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmos. Environ., 38, 4749–4760.

    Article  Google Scholar 

  • Kim, S. W., S. C. Yoon, J. Kim, et al., 2010: Asian dust event observed in Seoul, Korea, during 29–31 May 2008: Analysis of transport and vertical distribution of dust particles from lidar and surface measurements. Sci. Total Environ., 408, 1707–1718.

    Article  Google Scholar 

  • Kunkel, K. E., E. W. Eloranta, and S. T. Shipley, 1977: Lidar observations of the convective boundary layer. J. Appl. Meteor., 16, 1306–1311.

    Article  Google Scholar 

  • Liu Yi, Yang Dongxu, Chen Wenzhong, et al., 2010: Measurements of Asian dust optical properties over the Yellow Sea of China by shipboard and ground-based photometers, along with satellite remote sensing: A case study of the passage of a frontal system during April 2006. J. Geophys. Res., 115, D00K04, doi: 10.1029/2009JD012684.

    Google Scholar 

  • Luo Yunfeng, Lu Daren, Zhou Xiuji, et al., 2001: Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J. Geophys. Res., 106, 14501–14513.

    Article  Google Scholar 

  • Mariano, G. L., F. J. S. Lopes, M. P. P. M. Jorge, et al., 2010: Assessment of biomass burnings activity with the synergy of sunphotometric and LIDAR measurements in São Paulo, Brazil. Atmos. Res., 98, 486–499.

    Article  Google Scholar 

  • Melfi, S. H., J. D. Spinhirne, S. H. Chou, et al., 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806–821.

    Article  Google Scholar 

  • Menut, L., C. Flamant, J. Pelon, et al., 1999: Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt., 38, 945–954.

    Article  Google Scholar 

  • Noh, Y. M., Y. J. Kim, B. C. Choi, et al., 2007: Aerosol lidar ratio characteristics measured by a multiwavelength Raman lidar system at Anmyeon Island, Korea. Atmos. Res., 86, 76–87.

    Article  Google Scholar 

  • Pan Liang, Che Huizheng, Geng Fuhai, et al., 2010: Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta region. Atmos. Environ., 44, 2587–2596.

    Article  Google Scholar 

  • Parikh, N. C., and J. A. Parikh, 2002: Systematic tracking of boundary layer aerosols with laser radar. Opt. Laser Technol., 34, 177–185.

    Article  Google Scholar 

  • Qiu Jinhuan and Sun Jinhui, 1994: Optically remote sensing of the dust storm and result analysis. Chinese J. Atmos. Sci., 18, 1–10. (in Chinese)

    Google Scholar 

  • Quan Jiannong, Gao Yang, Zhang Qiang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34–40.

    Article  Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. Lelieveld, et al., 2001: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106, 28371–28398.

    Article  Google Scholar 

  • Ramanathan, V., F. Li, M. V. Ramana, et al., 2007: Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J. Geophys. Res., 112, D22S21, doi: 10.1029/2006JD008124.

    Google Scholar 

  • Russell, P. B., E. E. Uthe, F. L. Ludwig, et al., 1974: A comparison of atmospheric structure as observed with monostatic acoustic sounder and lidar techniques. J. Geophys. Res., 79, 5555–5566.

    Article  Google Scholar 

  • Russell, P. B., W. Viezee, R. D. Hake Jr, et al., 1976: Lidar observations of the stratospheric aerosol: California, October 1972 to March 1974. Quart. J. Roy. Meteor. Soc., 102, 675–695.

    Article  Google Scholar 

  • Salinas, S. V., B. N. Chew, J. Miettinen, et al., 2013: Physical and optical characteristics of the October 2010 haze event over Singapore: A photometric and lidar analysis. Atmos. Res., 122, 555–570.

    Article  Google Scholar 

  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 1275–1285.

    Article  Google Scholar 

  • Seibert, P., F. Beyrich, S. E. Gryning, et al., 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001–1027.

    Article  Google Scholar 

  • Spinhirne, J. D., 1993: Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 48–55.

    Article  Google Scholar 

  • Sun Yele, Zhuang Gguoshun, Tang Aohan, et al., 2006: Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol., 40, 3148–3155.

    Article  Google Scholar 

  • Sun Xia, Yin Yan, Sun Yuwen, et al., 2013: Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China. Atmos. Environ., 81, 245–252.

    Article  Google Scholar 

  • Tegen, I., and A. A. Lacis, 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101, 19237–19244.

    Article  Google Scholar 

  • Tie Xuexi, G. P. Brasseur, Zhao Chunsheng, et al., 2006: Chemical characterization of air pollution in eastern China and the eastern United States. Atmos. Environ., 40, 2607–2625.

    Article  Google Scholar 

  • Waggoner, A. P., R. E. Weiss, N. C. Ahlquist, et al., 1981: Optical characteristics of atmospheric aerosols. Atmos. Environ., 15, 1891–1909.

    Article  Google Scholar 

  • Wakimoto, R. M., and J. L. Mcelroy, 1986: Lidar observation of elevated pollution layers over Los Angeles. J. Climate Appl. Meteor., 25, 1583–1599.

    Article  Google Scholar 

  • Wang Yan, Xie Yisong, Li Zhengqiang, et al., 2013: Anthropogenic aerosol optical depth during days of high haze levels in the Beijing winter. J. Remote Sens., 17, 993–1007.

    Google Scholar 

  • Welton, E. J., K. J. Voss, P. K. Quinn, et al., 2002: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res., 107, INX2 18-1–INX2 18-20, 8019, doi:10.1029/2000JD000038.

    Article  Google Scholar 

  • Yang Dongwei, Li Chengcai, A. H. K. Lao, et al., 2013: Long-term measurement of daytime atmospheric mixing layer height over Hong Kong. J. Geophys. Res., 118, 2422–2433.

    Article  Google Scholar 

  • Zhang Renyi, A. Khalizov, Wang Lin, et al., 2012: Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev., 112, 1957–2011.

    Article  Google Scholar 

  • Zhang, R., J. Jing, J. Tao, et al., 2013: Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys., 13, 7053–7074.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiantao Cheng  (成天涛).

Additional information

Supported by the National Science and Technology Support Programe of China (2014BAC16B01), National Natural Science Foundation of China (41475109, 21190053, and 21177025), Shanghai Science and Technology Commission of Shanghai Municipality (12DJ1400100 and 12DZ2260200), Jiangsu Collaborative Innovation Center for Climate Change, Priority Fields for Ph.D. Programs of Foundation of Ministry of Education of China (0110071130003), FP7 Project (AMIS, PIRSES-GA-2011), and Program for New Century Excellent Talents in University (NCET).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Q., Leng, C. et al. Evolution of aerosol vertical distribution during particulate pollution events in Shanghai. J Meteorol Res 29, 385–399 (2015). https://doi.org/10.1007/s13351-014-4089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4089-0

Key words

Navigation