Skip to main content
Log in

Simulation of the electrification of a tropical cyclone using the WRF-ARW model: An idealized case

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Evolution of the electrification of an idealized tropical cyclone (TC) is simulated by using the Advanced Weather Research and Forecasting (WRF-ARW) model. The model was modified by addition of explicit electrification and a new bulk discharge scheme. The characteristics of TC lightning is further examined by analyses of the electrification and the charge structure of the TC. The findings thus obtained are able to unify most of the previous inconsisitent observational and simulation studies.

The results indicate that the TC eyewall generally exhibits an inverted dipole charge structure with negative charge above the positive. In the intensification stage, however, the extremely tall towers of the eyewall may exhibit a normal tripole structure with a main negative region between two regions of positive charge. The outer spiral rainband cells display a simple normal dipole structure during all the stages. It is further found that the differences in the charge structure are associated with different updrafts and particle distributions. Weak updrafts, together with a coexistence region of different particles at lower levels in the eyewall, result in charging processes that occur mainly in the positive graupel charging zone (PGCZ). In the intensification stage, the occurrence of charging processes in both positive and negative graupel charging zones is associated with strong updraft in the extremely tall towers. In addition, the coexistence region of graupel and ice crystals is mainly situated at upper levels in the outer rainband, so the charging processes mainly occur in the negative graupel charging zone (NGCZ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altaratz, O., T. Reisin, and Z. Levin, 2005: Simulation of the electrification of winter thunderclouds using the three-dimensional Regional Atmospheric Modeling System (RAMS) model: Single cloud simulations. J. Geophys. Res., 110(D20), D20205, doi: 10.1029/2004JD005616.

    Article  Google Scholar 

  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 2004–2028.

    Article  Google Scholar 

  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123.

    Article  Google Scholar 

  • DeMaria, M., R. T. DeMaria, J. A. Knaff, et al., 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 1828–1842.

    Article  Google Scholar 

  • Fierro, A. O., L. Leslie, E. Mansell, et al., 2007: A high-resolution simulation of microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98, 13–33.

    Article  Google Scholar 

  • —, and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477–494.

    Article  Google Scholar 

  • —, X.-M. Shao, T. Hamlin, et al., 2011: Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina. Mon. Wea. Rev., 139, 1492–1504.

    Article  Google Scholar 

  • —, E. R. Mansell, D. R. MacGorman, et al., 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model: Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Wea. Rev., 141, 2390–2415.

    Article  Google Scholar 

  • Gardiner, B., D. Lamb, R. L. Pitter, et al., 1985: Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J. Geophys. Res., 90 (D4), 6079–6086.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344.

    Article  Google Scholar 

  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609–630.

    Article  Google Scholar 

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 91–97.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.

    Article  Google Scholar 

  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi: 10.1029/2004GL021616.

    Article  Google Scholar 

  • Leary, L. A., and E. A. Ritchie, 2009: Lightning flash rates as an indicator of tropical cyclone genesis in the eastern North Pacific. Mon. Wea. Rev., 137, 3456–3470.

    Article  Google Scholar 

  • Lyons, W. A., and C. S. Keen, 1994: Observations of lightning in convective supercells within tropical storms and hurricanes. Mon. Wea. Rev., 122, 1897–1916.

    Article  Google Scholar 

  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, et al., 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110 (D12), D12101, doi: 10.1029/2004JD005287.

    Article  Google Scholar 

  • Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100 (D4), 7097–7103.

    Article  Google Scholar 

  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.

    Article  Google Scholar 

  • —, and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.

    Article  Google Scholar 

  • Molinari, J., P. K. Moore, V. P. Idone, et al., 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16665–16676.

    Article  Google Scholar 

  • —, —, and —, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520–534.

    Article  Google Scholar 

  • Pan, L., X. Qie, D. Liu, et al., 2010: The lightning activities in super typhoons over the Northwest Pacific. Sci. China (Earth Sci.), 53, 1241–1248.

    Article  Google Scholar 

  • Pereyra, R. G., E. E. Avila, N. E. Castellano, et al., 2000: A laboratory study of graupel charging. J. Geophys. Res., 105 (D16), 20803–20812.

    Article  Google Scholar 

  • Price, C., Y. Yair, and M. Asfur, 2007: East African lightning as a precursor of Atlantic hurricane activity. Geophys. Res. Lett., 34, L09805.

    Article  Google Scholar 

  • —, M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329–332.

    Article  Google Scholar 

  • Qie, X., 2012: Progresses in the atmospheric electricity researches in China during 2006–2010. Adv. Atmos. Sci., 29, 993–1005.

    Article  Google Scholar 

  • Reinhart, B., H. Fuelberg, R. Blakeslee, et al., 2014: Understanding the relationships between lightning, cloud microphysics, and airborne radar-derived storm structure during Hurricane Karl (2010). Mon. Wea. Rev., 142, 590–605.

    Article  Google Scholar 

  • Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542–561.

    Article  Google Scholar 

  • Samsury, C. E., and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122, 1887–1896.

    Article  Google Scholar 

  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13949–13956.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF version 3, NCAR/TN-475+STR, 113 pp.

    Google Scholar 

  • Squires, K., and S. Businger, 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136, 1706–1726.

    Article  Google Scholar 

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548.

    Article  Google Scholar 

  • Tan Yongbo, 2006: Numerical simulation of relationship of lightning discharge with the space charge and potential distribution in thundercloud. Ph. D. dissertation, Univ. of Sci. and Tech. of China, 173 pp. (in Chinese)

    Google Scholar 

  • Thomas, J. N., N. N. Solorzano, S. A. Cummer, et al., 2010: Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res., 115 (A3), A00E15, doi: 10.1029/2009JA014777

    Google Scholar 

  • Wu, T., W. S. Dong, Y. J. Zhang, et al., 2012: Discharge height of lightning narrow bipolar events. J. Geophys. Res., 117(D5), D05119, doi: 10.1029/2011JD017054.

    Google Scholar 

  • Xu Liangtao, Zhang Yijun, Wang Fei, et al., 2012: Coupling of electrification and discharge processes with WRF model and its preliminary verification. Chinese J. Atmos. Sci., 36, 1041–1052. (in Chinese)

    Google Scholar 

  • Zhang, W., Y. Zhang, D. Zheng, et al., 2012: Lightning distribution and eyewall outbreaks in tropical cyclones during landfall. Mon. Wea. Rev., 140, 3573–3586.

    Article  Google Scholar 

  • — and Zhou Xiuji, 2013: Lightning activity and precipitation characteristics of Typhoon Molave (2009) around its landfall. Acta Meteor. Sinica, 27, 742–757.

    Article  Google Scholar 

  • Zhang, Y., Q. Meng, P. R. Krehbiel, et al., 2004: Spatial and temporal characteristics of VHF radiation source produced by lightning in supercell thunderstorms. Chinese Sci. Bull., 49, 624–631.

    Article  Google Scholar 

  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, et al., 1991: A model evaluation of noninductive graupelice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96(D7), 12833–12855.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Zhang  (张义军).

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2014CB441406 and 2014CB441402), National Natural Science Foundation of China (41030960), and Basic Research Fund of Chinese Academy of Meteorological Sciences (2013Z006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhang, Y., Wang, F. et al. Simulation of the electrification of a tropical cyclone using the WRF-ARW model: An idealized case. J Meteorol Res 28, 453–468 (2014). https://doi.org/10.1007/s13351-014-3079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3079-6

Key words

Navigation