Skip to main content

Advertisement

Log in

Novel non-fiber optical metamaterial waveguide for monitoring canal and pipeline structures

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

The electromagnetic metamaterials are the recent entrants, into the classification of smart materials for structural health monitoring (SHM). Their applications in SHM have raised the curiosity due to their rapid executable speeds in wide-frequency domains. The speed of obtaining health output signals for engineering structures is about 1/100th of the time taken by existing smart material-based frequency domain techniques such as piezoelectric material-based techniques. Recently, we developed an ultra-sensitive near-field sensing technique using metamaterial localized surface plasmon (LSP) ‘sensor’ which produced diagnosable ‘confined surface electromagnetic waves’ for SHM. This paper presents the same near-field sensing technique in the frequency domain but using metamaterial ‘waveguides’ based on propagating surface plasmon polaritons (SPPs)/surface waves. For the experiments, a novel robust metamaterial waveguide coupling zone was designed and applied for monitoring longitudinal and lateral displacements in civil engineering prototype structures such as channels and pipelines. In the context of SHM, coupling zone and metamaterial waveguide resemble fiber Bragg grating (FBG) sensor and optical fiber waveguide, respectively. Thus, if properly realized, these metamaterials can co-exist with the existing FBG/optical fiber techniques for applications in civil engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ansari F (2007) Practical implementation of optical fiber sensors in civil structural health monitoring. J Intell Mater Syst Struct 18(8):879–889

    Article  Google Scholar 

  2. Annamdas VGM, Bhalla S, Soh CK (2017) Applications of Structural Health Monitoring Technology in Asia. Struct Health Monit 16(3):324–346

    Article  Google Scholar 

  3. Carboni M (2019) Reliability of non-destructive testing in the railway field: common practice and new trends. In: Varde P, Prakash R, Joshi N (eds) Risk based technologies. Springer, Singapore

    Google Scholar 

  4. Ebadi M, Bagheri M, Lajevardi MS, Haas B (2019) Defect detection of railway turnout using 3D scanning. In: Fraszczyk A, Marinov M (eds) Sustainable rail transport. Lecture Notes in Mobility. Springer, New York

    Google Scholar 

  5. Rose JL (2009) Successes and challenges in ultrasonic guided waves for NDT and SHM, December 10-12, NDE-India

  6. Annamdas VGM, Radhika MA (2013) Electromechanical impedance of piezoelectric transducers for monitoring metallic and non metallic structures: a review of wired, wireless and energy harvesting methods. J Intell Mater Syst Struct 24(9):1019–1040

    Article  Google Scholar 

  7. Lim YY, Smith ST, Soh CK (2018) Wave propagation-based monitoring of concrete curing using piezoelectric materials: review and path forward. NDT E Int 99:50–63

    Article  Google Scholar 

  8. di Sante R (2015) Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sens Basel 15(8):18666–18713

    Article  Google Scholar 

  9. Maheshwari M, Annamdas VGM, Pang JHL, Asundi A, Tjin SC (2017) Crack monitoring using multiple smart materials; fiber-optic sensors & piezo sensors. Int J Smart Nano Mater 8(1):41–55

    Article  Google Scholar 

  10. Rice JA, Mechitov K, Sim S-H, Nagayama T, Jang S, Kim R, Spencer BF Jr, Agha G, Fujino Y (2010) Flexible smart sensor framework for autonomous structural health monitoring. Smart Struct Syst 6(5–6):423–438

    Article  Google Scholar 

  11. Maheshwari M, Annamdas VGM, Pang JHL, Tjin SC, Asundi AK (2015) Damage monitoring using fiber optic sensors and by analysing electro-mechanical admittance signatures obtained from piezo sensor, (Micro + Nano Materials, Devices, and Systems, Benjamin J. Eggleton; Stefano Palomba, Sydney, New South Wales, Australia| December 06, 2015), Proc. SPIE 9668, Micro + Nano Materials, Devices, and Systems, 966816 (December 22, 2015); https://doi.org/10.1117/12.2202547

  12. Hill KO, Fujii Y, Johnson DC, Kawasaki BS (1978) Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication. Appl Phys Lett 32(10):647. https://doi.org/10.1063/1.89881

    Article  Google Scholar 

  13. Meltz G et al (1989) Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt Lett 14(15):823–825. https://doi.org/10.1364/OL.14.000823

    Article  Google Scholar 

  14. Annamdas VGM, Yang Y (2012) Practical implementation of piezo-impedance sensors in monitoring of excavation support structures. Struct Control Health Monit 19(2):231–245

    Article  Google Scholar 

  15. Chen T, Li S, Sun H (2012) Metamaterials application in sensing. Sens Basel 12(3):2742–2765

    Article  Google Scholar 

  16. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Article  Google Scholar 

  17. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  18. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227

    Article  Google Scholar 

  19. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  Google Scholar 

  20. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  Google Scholar 

  21. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Optical hyperlens magnifying sub-diffraction-limited object. Science 315:1686–1687

    Article  Google Scholar 

  22. Hu G, Tang L, Banerjee A, Das R (2016) Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting. J Vib Acoust 139(1):011012. https://doi.org/10.1115/1.40347702017

    Article  Google Scholar 

  23. Liu R, Ji C, Zhao Z (2015) Metamaterials: reshape and rethink. Engineering 1:179–184

    Article  Google Scholar 

  24. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084

    Article  Google Scholar 

  25. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  Google Scholar 

  26. Bai Q, Liu C, Chen J, Cheng C, Kang M (2010) Tunable slow light in semiconductor metamaterial in a broad terahertz regime. J Appl Phys 107:093104:1–093104:8

    Google Scholar 

  27. Singh R, Rockstuhl C, Lederer F, Zhang W (2009) Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B 79:085111:1–085111:4

    Google Scholar 

  28. Wuttig M, Yamada N (2007) Phase-change materials for rewritable data storage. Nat Mater 6:824–832

    Article  Google Scholar 

  29. Kind H, Yan H, Messer B, Law M, Yang P (2002) Nano wire ultra violet photo detectors and optical switches. Adv Mater 14:158–160

    Article  Google Scholar 

  30. Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H (2008) Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 7:31–37

    Article  Google Scholar 

  31. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial exhibiting negative refractive index. Nature 455:376–379

    Article  Google Scholar 

  32. Annamdas VGM, Soh CK (2016) Contactless load monitoring in near-field with surface localized spoof plasmons—a new breed of metamaterials for health of engineering structures. Sens Actuators A 244:156–165. https://doi.org/10.1016/j.sna.2016.04.037

    Article  Google Scholar 

  33. Annamdas VGM, Soh CK (2017) Evaluation of peak-free electromechanical piezo-impedance and electromagnetic contact sensing using metamaterial surface plasmons for load monitoring. Smart Mater Struct 26(1):015003

    Article  Google Scholar 

  34. Annamdas VGM, Soh CK (2018) Application of metamaterial surface plasmon and waveguide for robotic-arm based structural health monitoring. J Nondestr Eval 37(2):34. https://doi.org/10.1007/s10921-018-0490-4

    Article  Google Scholar 

  35. Ozbey B, Demir HV, Kurc O, Erturk VB, Altintas A (2015) Wireless sensing in complex electromagnetic media: construction materials and structural monitoring. IEEE Sens J 15:5545–5554

    Article  Google Scholar 

  36. Melik R, Unal E, Perkgoz NK, Puttlitz C, Demir H (2009) Flexible metamaterials for wireless strain sensing. Appl Phys Lett 95:181108

    Article  Google Scholar 

  37. Ozbey B, Demir HV, Kurc O, Erturk VB, Altintas A (2014) Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor. Sens Basel 14(10):19609–19621

    Article  Google Scholar 

  38. Roper DK, Ahn W, Taylor B, Dall’Asen AG (2010) Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on sub wavelength structures. IEEE Sens J 10(3):531–540

    Article  Google Scholar 

  39. Zoughi R, Kharkovsky S (2008) Microwave and millimeter wave sensors for crack detection. Fatigue Fract Eng Mater Struct 31:695–713

    Article  Google Scholar 

  40. Zhang H, Gao B, Tian GY, Woo WL, Bai L (2013) Metal defects sizing and detection under a thick coating using microwave. NDT E Int 60:52–61

    Article  Google Scholar 

  41. Melik R, Unal E, Perkgoz NK, Puttlitz C, Demir HV (2010) Metamaterial based telemetric strain sensing in different materials. Opt Express 18(5):5000–5007

    Article  Google Scholar 

  42. Chen T, Li S, Sun H (2012) Metamaterials application in sensing. Sensor (Basel) 12(3):2742–2765

    Article  Google Scholar 

  43. Huang M, Yang J (2011) Microwave sensor using metamaterials. http://cdn.intechweb.org/pdfs/14154.pdf. Accessed on 15 May

  44. Jordi N, Miguel DS, Ferran M (2011) Novel sensors based on the symmetry properties of split ring resonators (SRRs). Sens Basel 11(8):7545–7553

    Article  Google Scholar 

  45. Shen X, Cui TJ (2014) Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photonics Rev 8(1):137–145

    Article  Google Scholar 

  46. Zhang HC, Liu S, Shen X, Chen LH, Li L, Cui TJ (2015) Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev 9(1):83–90

    Article  Google Scholar 

  47. Ma HF, Shen X, Cheng Q, Jiang WX, Cui TJ (2013) Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev 8:1–6. https://doi.org/10.1002/lpor.201300118

    Article  Google Scholar 

  48. Pan BC, Tao Z, Cui TJ 2015. Multi-layer transmission of spoof surface plasmon polaritons, progress In: Electromagnetics research symposium proceedings. PIERS Proceedings, Prague, Czech Republic, July 6-9, pp. 785–787

  49. Polo JA Jr, Lakhtakia A (2011) Surface electromagnetic waves: a review. Laser Photonics Rev 5(2):234–246

    Article  Google Scholar 

  50. Zeng S, Baillargeat D, Ho H-P, Yong K-T et al (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43(10):3426–3452. https://doi.org/10.1039/c3cs60479a (PMID 24549396)

    Article  Google Scholar 

  51. Pendry JB, Martin-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848

    Article  Google Scholar 

  52. Tang WX, Zhang HC, Ma HF, Jiang WX, Cui TJ (2019) Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies, advanced. Opt Mater 7(1):1800421. https://doi.org/10.1002/adom.201800421

    Article  Google Scholar 

  53. Annamdas VGM, Soh CK (2019) A perspective of non-fiber-optical metamaterial and piezoelectric material sensing in automated structural health monitoring. Sensors 19(7):1490. https://doi.org/10.3390/s19071490

    Article  Google Scholar 

  54. Barchiesi E, Spagnuolo M, Placidi L (2019) Mechanical metamaterials: a state of the art. Math Mech Solids 24(1):212–234. https://doi.org/10.1177/1081286517735695

    Article  MathSciNet  Google Scholar 

  55. Pan W, Tang G, Tang J (2018) Evaluation of uncertainty effects to band gap behavior of circuitry-integrated piezoelectric metamaterial using order-reduced analysis. J Intell Mater Syst Struct 29(12):2677–2692. https://doi.org/10.1177/1045389X18778359

    Article  Google Scholar 

  56. Gao F, Gao Z, Zhang Y, Shi X, Yang Z, Zhang B (2015) Vertical transport of sub wavelength localized surface electromagnetic modes. Laser Photonics Rev 9:571–576. https://doi.org/10.1002/lpor.201500117

    Article  Google Scholar 

  57. Linbou System (2019) https://www.linbou.com. Accessed on 28 Apr 2019

  58. Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib Digest 35:451–463

    Article  Google Scholar 

  59. Giurgiutiu V, Lin B, Santoni-Bottai G, Cuc A (2011) Space application of piezoelectric wafer active sensors for structural health monitoring. J Intell Mater Syst Struct 22(12):1359–1370

    Article  Google Scholar 

  60. Park S, Yun CB, Inman DJ (2008) Structural health monitoring using electro-mechanical impedance sensors. Fatigue Fract Eng Mater Struct 31(8):714–724

    Article  Google Scholar 

  61. Harry AA, Albert P (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  62. Zhao L, Zhang X, Wang J, Yu W, Li J, Su H, Shen X (2016) A novel broadband band-pass filter based on spoof surface plasmon polaritons. Sci Rep 6:36069. https://doi.org/10.1038/srep36069

    Article  Google Scholar 

  63. Shen X, Cui TJ, Martin-Cano D, Garcia-Viadal FJ (2013) Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci 110(1):40–45

    Article  Google Scholar 

  64. Shen X, Cui TJ (2013) Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl Phys Lett 102:211909

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Shantanu Vasudev Krishna and Radhika Madhav for their encouragement in writing this article. We thank the final year undergraduate student Jason Ang for his help in experimental studies of metamaterial sensors and waveguide for water effect. We also thank visiting freelance researchers Sai Priti Mundrathi, Siri, and Swapna for their invaluable support to research on new materials.

Funding

No external funding except the regular budget of school of civil and environmental engineering was sought for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Gopal Madhav Annamdas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annamdas, V.G.M., Soh, C.K. Novel non-fiber optical metamaterial waveguide for monitoring canal and pipeline structures. J Civil Struct Health Monit 9, 369–383 (2019). https://doi.org/10.1007/s13349-019-00339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-019-00339-6

Keywords

Navigation