Skip to main content

Advertisement

Log in

Optimized gravity-driven intranasal drop administration delivers significant doses to the ostiomeatal complex and maxillary sinus

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Chronic and allergic rhinosinusitis impacts approximately 12% of the global population. Challenges in rhinosinusitis treatment include paranasal sinus inaccessibility and variability in delivery efficiency among individuals. This study addresses these challenges of drug delivery by developing a high-efficiency, low-variability protocol for nasal drop delivery to the ostiomeatal complex (OMC) and maxillary sinus. Patient-specific nasal casts were dissected to reveal the configurations of conchae and meatus, providing insights into anatomical features amendable for sinus delivery. Fluorescent dye-enhanced videos visualized the dynamic liquid translocation in transparent nasal casts, allowing real-time assessment and quick adjustment to delivery parameters. Dosimetry to the OMC and maxillary sinus were quantified as drop count and mass using a precision scale. Key delivery factors, including the device type, formulation, and head-chin orientation, were systematically investigated in a cohort of ten nasal casts. Results show that both the squeeze bottle and soft-mist nasal pump yielded notably low doses to the OMC with high variability, and no dose from these two devices was detected within the maxillary sinuses. In contrast, the proposed approach, which included a curved nozzle surpassing the nasal valve and leveraged gravity-driven liquid translocation along the lateral nasal wall, delivered significant doses to the OMC and maxillary sinus. Iterative experimentations identified the optimal head tilt to be 40° and chin tilt to be° from the lateral recumbent position. Statistical analyses established the drop count required for effective OMC/sinus delivery. The proposed delivery protocol holds the potential to enhance chronic rhinosinusitis treatment outcomes with low variability. The dual role of nasal anatomy in posing challenges and offering opportunities highlights the need for future investigations using diverse formulations in a larger cohort of nasal models.

Graphical Abstract

Optimized gravity-driven intranasal drop administration delivers significant doses to the ostiomeatal complex and maxillary sinus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Palmer JN, Messina JC, Biletch R, Grosel K, Mahmoud RA. A cross-sectional, population-based survey of U.S. adults with symptoms of chronic rhinosinusitis. Allergy Asthma Proc. 2019;40:48–56.

    Article  PubMed  Google Scholar 

  2. Albu S. Chronic rhinosinusitis—an update on epidemiology, pathogenesis and management. J Clin Med. 2020;9:2285.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Laube BL. Devices for aerosol delivery to treat sinusitis. J Aerosol Med. 2007;20(Suppl 1):S5-17.

    Article  CAS  PubMed  Google Scholar 

  4. Rudmik L. Economics of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2017;17:20.

    Article  PubMed  Google Scholar 

  5. Baumann I, Blumenstock G, Zalaman IM, Praetorius M, Klingmann C, et al. Impact of gender, age, and comorbidities on quality of life in patients with chronic rhinosinusitis. Rhinology. 2007;45:268–72.

    PubMed  Google Scholar 

  6. Jurlin L, Gregurić T, Baudoin T, Grgić MV, Pažanin L, et al. Cluster analysis of chronic rhinosinusitis suggests gender-based differences. ORL J Otorhinolaryngol Relat Spec. 2019;81:1–9.

    Article  PubMed  Google Scholar 

  7. Adams DR, Xu LJ, Vickery TW, Scangas GA, Bleier BS, et al. The impact of gender on long-term quality of life after sinus surgery for chronic rhinosinusitis. Laryngoscope. 2023. https://doi.org/10.1002/lary.30719.

    Article  PubMed  Google Scholar 

  8. Gill AS, Ashby S, Oakley GM, Steele TO, Menjivar D, et al. Comorbidities known to affect physical function negatively impact baseline health-related quality-of-life in patients with chronic rhinosinusitis. Am J Rhinol Allergy. 2022;36:25–32.

    Article  PubMed  Google Scholar 

  9. Jankowski R, Gallet P, Nguyen DT, Rumeau C. Chronic rhinosinusitis of adults: new definition, new diagnosis. Rev Prat. 2019;69:274–8.

    PubMed  Google Scholar 

  10. Othieno F, Schlosser RJ, Rowan NR, Storck KA, Mattos JL, et al. Taste impairment in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018;8:783–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Han P, Whitcroft KL, Fischer J, Gerber J, Cuevas M, et al. Olfactory brain gray matter volume reduction in patients with chronic rhinosinusitis. Int Forum Allergy Rhinol. 2017;7:551–6.

    Article  PubMed  Google Scholar 

  12. Lin S, Nie M, Wang B, Duan S, Huang Q, et al. Intrinsic brain abnormalities in chronic rhinosinusitis associated with mood and cognitive function. Front Neurosci. 2023;17:1131114.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang SF, Lee TJ, Lin KL. Concomitant bilateral orbital and brain abscesses–unusual complications of pediatric rhinosinusitis. Chang Gung Med J. 2005;28:51–5.

    PubMed  Google Scholar 

  14. Ziegler A, Patadia M, Stankiewicz J. Neurological complications of acute and chronic sinusitis. Curr Neurol Neurosci Rep. 2018;18:5.

    Article  PubMed  Google Scholar 

  15. Whyte A, Boeddinghaus R. The maxillary sinus: physiology, development and imaging anatomy. Dentomaxillofac Radiol. 2019;48:20190205.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harbo G, Grau C, Bundgaard T, Overgaard M, Elbrønd O, et al. Cancer of the nasal cavity and paranasal sinuses. A clinico-pathological study of 277 patients. Acta Oncol. 1997;36:45–50.

    Article  CAS  PubMed  Google Scholar 

  17. Brzost J, Czerwaty K, Dżaman K, Ludwig N, Piszczatowska K, et al. Perspectives in therapy of chronic rhinosinusitis. Diagnostics. 2022;12:2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shrestha K, Wong E, Salati H, Fletcher DF, Singh N, et al. Liquid volume and squeeze force effects on nasal irrigation using volume of fluid modelling. Exp Comput Multiph Flow. 2022;4:445–64.

    Article  Google Scholar 

  19. Farrell NF, Klatt-Cromwell C, Schneider JS. Benefits and safety of nasal saline irrigations in a pandemic-washing COVID-19 away. JAMA Otolaryngol Head Neck Surg. 2020;146:787–8.

    Article  PubMed  Google Scholar 

  20. Verma RR, Verma R. Sinonasal irrigation after endoscopic sinus surgery—past to present and future. Indian J Otolaryngol Head Neck Surg. 2023;75:1–8.

    Article  PubMed  Google Scholar 

  21. Abdullah B, Periasamy C, Ismail R. Nasal irrigation as treatment in sinonasal symptoms relief: a review of its efficacy and clinical applications. Indian J Otolaryngol Head Neck Surg. 2019;71:1718–26.

    Article  PubMed  Google Scholar 

  22. Sansila K, Eiamprapai P, Sawangjit R. Effects of self-prepared hypertonic nasal saline irrigation in allergic rhinitis: a randomized controlled trial. Asian Pac J Allergy Immunol. 2020;38:200–7.

    CAS  PubMed  Google Scholar 

  23. Shi J, Tan L, Ye J, Hu L. Hypertonic saline and mannitol in patients with traumatic brain injury: a systematic and meta-analysis. Medicine. 2020;99:e21655.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salati H, Bartley J, White DE. Nasal saline irrigation—a review of current anatomical, clinical and computational modelling approaches. Respir Physiol Neurobiol. 2020;273:103320.

    Article  PubMed  Google Scholar 

  25. Salati H, Bartley J, Yazdi SG, Jermy M, White DE. Neti pot irrigation volume filling simulation using anatomically accurate in-vivo nasal airway geometry. Respir Physiol Neurobiol. 2021;284:103580.

    Article  CAS  PubMed  Google Scholar 

  26. Inthavong K, Shang Y, Wong E, Singh N. Characterization of nasal irrigation flow from a squeeze bottle using computational fluid dynamics. Int Forum Allergy Rhinol. 2020;10:29–40.

    Article  PubMed  Google Scholar 

  27. Siddiqui Z, Tahiri M, Gupta A, Kin Nam RH, Rachmanidou A. The management of paediatric rhinosinusitis. Int J Pediatr Otorhinolaryngol. 2021;147:110786.

    Article  PubMed  Google Scholar 

  28. Medikeri G, Javer A. Optimal management of allergic fungal rhinosinusitis. J Asthma Allergy. 2020;13:323–32.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bartier S, Coste A, Bequignon E. Management strategies for chronic rhinosinusitis with nasal polyps in adults. Rev Mal Respir. 2021;38:183–98.

    Article  CAS  PubMed  Google Scholar 

  30. Amjadimanesh H, Faramarzi M, Sadrizadeh S, Abouali O. Micro-particle deposition in maxillary sinus for various sizes of opening in a virtual endoscopic surgery. Exp Comput Multiph Flow. 2023;5:262–71.

    Article  Google Scholar 

  31. Alsaleh S, Manji J, Javer A. Optimization of the surgical field in endoscopic sinus surgery: an evidence-based approach. Curr Allergy Asthma Rep. 2019;19:8.

    Article  PubMed  Google Scholar 

  32. Li Y, Konuthula N, Humphreys IM, Moe K, Hannaford B, et al. Real-time virtual intraoperative CT in endoscopic sinus surgery. Int J Comput Assist Radiol Surg. 2022;17:249–60.

    Article  PubMed  Google Scholar 

  33. Zhao K, Craig JR, Cohen NA, Adappa ND, Khalili S, et al. Sinus irrigations before and after surgery—visualization through computational fluid dynamics simulations. Laryngoscope. 2016;126:E90-96.

    Article  PubMed  Google Scholar 

  34. Wu Z, Craig JR, Maza G, Li C, Otto BA, et al. Peak sinus pressures during sneezing in healthy controls and post-skull base surgery patients. Laryngoscope. 2020;130:2138–43.

    Article  PubMed  Google Scholar 

  35. Sun Q, Dong J, Zhang Y, Tian L, Tu J. Numerical study of the effect of nasopharynx airway obstruction on the transport and deposition of nanoparticles in nasal airways. Exp Comput Multiph Flow. 2022;4:399–408.

    Article  Google Scholar 

  36. Xi J, Lei LR, Zouzas W, April Si X. Nasally inhaled therapeutics and vaccination for COVID-19: developments and challenges. MedComm. 2021;2:569–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xi J. Development and challenges of nasal spray vaccines for short-term COVID-19 protection. Curr Pharm Biotechnol. 2022;23:1671–7.

    Article  CAS  PubMed  Google Scholar 

  38. Sélam JL. Inhaled insulin: Promises and concerns. J Diabetes Sci Technol. 2008;2:311–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Djupesland PG, Skretting A, Winderen M, Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004;17:249–59.

    Article  CAS  PubMed  Google Scholar 

  40. Xi J, Wang Z, Nevorski D, White T, Zhou Y. Nasal and olfactory deposition with normal and bidirectional intranasal delivery techniques: in vitro tests and numerical simulations. J Aerosol Med Pulm Drug Deliv. 2017;30:118–31.

    Article  CAS  PubMed  Google Scholar 

  41. Xi J, Wang Z, Si XA, Zhou Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: in vitro tests and numerical modeling. Eur J Pharm Sci. 2018;118:113–23.

    Article  CAS  PubMed  Google Scholar 

  42. Seifelnasr A, Talaat M, Ramaswamy P, Si XA, Xi J. A supine position and dual-dose applications enhance spray dosing to the posterior nose: paving the way for mucosal immunization. Pharmaceutics. 2023;15:359.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Djupesland PG. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res. 2013;3:42–62.

    Article  CAS  PubMed  Google Scholar 

  44. Leclerc L, Pourchez J, Aubert G, Leguellec S, Vecellio L, et al. Impact of airborne particle size, acoustic airflow and breathing pattern on delivery of nebulized antibiotic into the maxillary sinuses using a realistic human nasal replica. Pharm Res. 2014;31:2335–43.

    Article  CAS  PubMed  Google Scholar 

  45. Maniscalco M, Sofia M, Weitzberg E, Lundberg JO. Sounding airflow enhances aerosol delivery into the paranasal sinuses. Eur J Clin Invest. 2006;36:509–13.

    Article  CAS  PubMed  Google Scholar 

  46. Durand M, Pourchez J, Aubert G, Le Guellec S, Navarro L, et al. Impact of acoustic airflow nebulization on intrasinus drug deposition of a human plastinated nasal cast: new insights into the mechanisms involved. Int J Pharm. 2011;421:63–71.

    Article  CAS  PubMed  Google Scholar 

  47. Xi J, Si XA, Peters S, Nevorski D, Wen T, et al. Understanding the mechanisms underlying pulsating aerosol delivery to the maxillary sinus: in vitro tests and computational simulations. Int J Pharm. 2017;520:254–66.

    Article  CAS  PubMed  Google Scholar 

  48. Xi J, Yuan JE, Si XA, Hasbany J. Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis. Int J Nanomedicine. 2015;10:4847–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Möller W, Schuschnig U, Bartenstein P, Meyer G, Häussinger K, et al. Drug delivery to paranasal sinuses using pulsating aerosols. J Aerosol Med Pulm Drug Deliv. 2014;27:255–63.

    Article  PubMed  Google Scholar 

  50. Möller W, Schuschnig U, Celik G, Münzing W, Bartenstein P, et al. Topical drug delivery in chronic rhinosinusitis patients before and after sinus surgery using pulsating aerosols. PLoS ONE. 2013;8:e74991.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Foo MY, Cheng YS, Su WC, Donovan MD. The influence of spray properties on intranasal deposition. J Aerosol Med. 2007;20:495–508.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng YS, Holmes TD, Gao J, Guilmette RA, Li S, et al. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J Aerosol Med. 2001;14:267–80.

    Article  CAS  PubMed  Google Scholar 

  53. Pourmehran O, Zarei K, Pourchez J, Vreugde S, Psaltis A, et al. Advancements in acoustic drug delivery for paranasal sinuses: A comprehensive review. Int J Pharm. 2023;644:123277.

    Article  CAS  PubMed  Google Scholar 

  54. Tai J, Lee K, Kim TH. Current perspective on nasal delivery systems for chronic rhinosinusitis. Pharmaceutics. 2021;13:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xi J, Yuan JE, Zhang Y, Nevorski D, Wang Z, et al. Visualization and quantification of nasal and olfactory deposition in a sectional adult nasal airway cast. Pharm Res. 2016;33:1527–41.

    Article  CAS  PubMed  Google Scholar 

  56. Seifelnasr A, Talaat M, Si XA, Xi J. Delivery of agarose-aided sprays to the posterior nose for mucosa immunization and short-term protection against infectious respiratory diseases. Curr Pharm Biotechnol. 2024;25:In press.

    Google Scholar 

  57. Cankurtaran M, Celik H, Coşkun M, Hizal E, Cakmak O. Acoustic rhinometry in healthy humans: accuracy of area estimates and ability to quantify certain anatomic structures in the nasal cavity. Ann Otol Rhinol Laryngol. 2007;116:906–16.

    Article  PubMed  Google Scholar 

  58. Avrunin OG, Nosova YV, Abdelhamid IY, Pavlov SV, Shushliapina NO, et al. Research active posterior rhinomanometry tomography method for nasal breathing determining violations. Sensors. 2021;21:8508.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kwah JH, Peters AT. Nasal polyps and rhinosinusitis. Allergy Asthma Proc. 2019;40:380–4.

    Article  PubMed  Google Scholar 

  60. Seifelnasr A, Si XA, Xi J. Visualization and estimation of nasal spray delivery to olfactory mucosa in an image-based transparent nasal model. Pharmaceutics. 2023;15:1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xi J, Si XA. A next-generation vaccine for broader and long-lasting COVID-19 protection. MedComm. 2022;3:e138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Talaat M, Si X, Liu X, Xi J. Count-and mass-based dosimetry of MDI spray droplets with polydisperse and monodisperse size distributions. Int J Pharm. 2022;623:121920.

    Article  CAS  PubMed  Google Scholar 

  63. Xi J, Talaat M, Si XA. Two-way coupling and Kolmogorov scales on inhaler spray plume evolutions from Ventolin, ProAir, and Qvar. Math Biosci Eng. 2022;19:10915–40.

    Article  PubMed  Google Scholar 

  64. Zhao K, Malhotra P, Rosen D, Dalton P, Pribitkin EA. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection. Anat Rec (Hoboken). 2014;297:2187–95.

    Article  PubMed  Google Scholar 

  65. Kim K, Otto BA, Farag AA, Zhao K. Topical irrigation against gravity may lead to better sinus penetration. Int Forum Allergy Rhinol. 2021;11:198–200.

    Article  PubMed  Google Scholar 

  66. Lepley TJ, Kim K, Ardizzone M, Kelly KM, Otto BA, et al. 3D printing as a planning tool to optimize sinonasal irrigation. Ann Otol Rhinol Laryngol. 2023:34894221149242.

  67. Alfaifi A, Hosseini S, Esmaeili AR, Walenga R, Babiskin A, et al. Anatomically realistic nasal replicas capturing the range of nasal spray drug delivery in adults. Int J Pharm. 2022;622:121858.

    Article  CAS  PubMed  Google Scholar 

  68. Maaz A, Blagbrough IS, De Bank PA. In vitro evaluation of nasal aerosol depositions: an insight for direct nose to brain drug delivery. Pharmaceutics. 2021;13.

  69. Williams G, Suman JD. In vitro anatomical models for nasal drug delivery. Pharmaceutics. 2022;14:1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xi J, Si XA, Kim J, Zhang Y, Jacob RE, et al. Anatomical details of the rabbit nasal passages and their implications in breathing, air conditioning, and olfaction. Anat Rec. 2016.

  71. Xi J, Yuan J, Alshaiba M, Cheng D, Firlit Z, et al. Design and testing of electric-guided delivery of charged particles to the olfactory region: experimental and numerical studies. Curr Drug Deliv. 2015;13:1–10.

    Google Scholar 

  72. Si XA, Talaat M, Xi J. Effects of guiding vanes and orifice jet flow of a metered-dose inhaler on drug dosimetry in human respiratory tract. Exp Comput Multiph Flow. 2023;5:247–61.

    Article  Google Scholar 

  73. Si X, Xi J, Kim J. Effect of laryngopharyngeal anatomy on expiratory airflow and submicrometer particle deposition in human extrathoracic airways. Open J Fluid Dyn. 2013;3:286–301.

    Article  Google Scholar 

  74. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, et al. 3D Slicer as an image computing platform for the ouantitative imaging network. Magn Reson Imaging. 2012;30:1323–41.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xi J, Kim J, Si XA, Corley RA, Zhou Y. Modeling of inertial deposition in scaled models of rat and human nasal airways: towards in vitro regional dosimetry in small animals. J Aerosol Sci. 2016;99:78–93.

    Article  CAS  Google Scholar 

  76. Xi J, Si X, Kim J, Su G, Dong H. Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound. Med Biol Eng Comput. 2014;52:567–77.

    Article  PubMed  Google Scholar 

  77. Kabilan S, Suffield SR, Recknagle KP, Jacob RE, Einstein DR, et al. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways. J Aerosol Sci. 2016;99:64–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zare F, Aalaei E, Zare F, Faramarzi M, Kamali R. Targeted drug delivery to the inferior meatus cavity of the nasal airway using a nasal spray device with angled tip. Comput Methods Programs Biomed. 2022;221:106864.

  79. Lehr C-M, Bouwstra JA, Boddé HE, Junginger HE. A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids. Pharm Res. 1992;9:70–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Chantal Darquenne at UCSD and Dr. Richard Corley at Greek Creek Toxicokinetics Consulting were gratefully acknowledged for sharing the M2 nasal model used in this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Amr Seifelnasr, Farhad Zare, Xiuhua April Si, and Jinxiang Xi. The first draft of the manuscript was written by Amr Seifelnasr, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinxiang Xi.

Ethics declarations

Ethics approval

This is an observational study. The UMass Lowell Research Ethics Committee has confirmed that no ethical approval is required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Authors AS FZ and XSA declare they have no financial interests. Author JX has received research funding from AmPhastar Pharmaceuticals Inc. and MedSpray Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (7Z 36759 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifelnasr, A., Zare, F., Si, X.A. et al. Optimized gravity-driven intranasal drop administration delivers significant doses to the ostiomeatal complex and maxillary sinus. Drug Deliv. and Transl. Res. (2023). https://doi.org/10.1007/s13346-023-01488-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-023-01488-4

Keywords

Navigation