Skip to main content

Advertisement

Log in

Bioinspired 3D scaffolds with antimicrobial, drug delivery, and osteogenic functions for bone regeneration

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A major clinical challenge today is the large number of bone defects caused by diseases or trauma. The development of three-dimensional (3D) scaffolds with adequate properties is crucial for successful bone repair. In this study, we prepared biomimetic mesoporous bioactive glass (MBG)-based scaffolds with and without ceria addition (up to 3 mol %) to explore the biological structure and chemical composition of the marine sponge Spongia Agaricina (SA) as a sacrificial template. Micro-CT examination revealed that all scaffolds exhibited a highly porous structure with pore diameters primarily ranging from 143.5 μm to 213.5 μm, facilitating bone ingrowth. Additionally, smaller pores (< 75 μm), which are known to enhance osteogenesis, were observed. The undoped scaffold displayed the highest open porosity value of 90.83%. Cytotoxicity assessments demonstrated that all scaffolds were noncytotoxic and nongenotoxic toward osteoblast cells. Moreover, scaffolds with higher CeO2 content promoted osteogenic differentiation of dental pulp stem cells, stimulating calcium and osteocalcin secretion. The scaffolds also exhibited antimicrobial and antibiofilm effects against Staphylococcus aureus (S. aureus) as well as drug delivery ability. Our research findings indicated that the combination of MBG, natural biological structure, and the addition of Ce exhibited a synergistic effect on the structure and biological properties of scaffolds for applications in bone tissue engineering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding authors upon reasonable request.

References

  1. De Long JWG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89(3):649–58. https://doi.org/10.2106/JBJS.F.00465.

    Article  PubMed  Google Scholar 

  2. Wanga W, Yeunga KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224–47. https://doi.org/10.1016/j.bioactmat.2017.05.007.

    Article  Google Scholar 

  3. Raheem AA, Hameed P, Whenish R, Elsen RS, Aswin G, Kumar JA, Gokuldoss PK, Manivasagam G. A review on development of bio-inspired implants using 3D printing. Biomimetics. 2021;6:65. https://doi.org/10.3390/biomimetics6040065.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu T, Yu S, Chen D, Wang Y. Bionic design, materials and performance of bone tissue scaffolds. Materials. 2017;10:1187. https://doi.org/10.3390/ma10101187.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3:278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001.

    Article  PubMed  Google Scholar 

  6. Huzum B, Puha B, Necoara RM, Gheorghevici S, Puha G, Filip A, Sirbu PD, Alexa O. Biocompatibility assessment of biomaterials used in orthopedic devices: an overview (review). Exp Ther Med. 2021;22(5):1315. https://doi.org/10.3892/etm.2021.10750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sadeghianmaryan A, Naghieh S, Yazdanpanah Z, Sardroud HA, Sharma NK, Wilson LD, Chen X. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int J Biol Macromol. 2022;204:62–75. https://doi.org/10.1016/j.ijbiomac.2022.01.201.

    Article  CAS  PubMed  Google Scholar 

  8. Jun I, Han HS, Edwards JR, Jeon H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int J Mol Sci. 2018;19(3):745. https://doi.org/10.3390/ijms19030745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colosi C, Costantini M, Barbetta A, Pecci R, Bedini R, Dentini M. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques. Langmuir. 2013;29:82–91. https://doi.org/10.1021/la303788z.

    Article  CAS  PubMed  Google Scholar 

  10. Brougham CM, Livingstone TJ, Shen N, Cooney GM, Jockenhoevel S, Flanagan TC, O’Brien FJ. Freeze-drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv Healthc Mater. 2017;6(21):1700598. https://doi.org/10.1002/adhm.201700598.

    Article  CAS  Google Scholar 

  11. Fiume E, Ciavattini S, Verné E, Baino F. Foam replica method in the manufacturing of bioactive glass scaffolds: out-of-date technology or still underexploited potential? Materials. 2021;14(11):2795. https://doi.org/10.3390/ma14112795.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho YS, Kim BS, You HK, Cho YS. A novel technique for scaffold fabrication: SLUP (salt leaching using powder). Curr Appl Phys. 2014;14(3):371–7. https://doi.org/10.1016/j.cap.2013.12.013.

    Article  ADS  Google Scholar 

  13. Zhao J, Duan K, Zhang JW, Guo LY, Weng J. Preparation of highly interconnected porous hydroxyapatite scaffolds by chitin gel-casting. Mat Sci Eng C. 2011;31:697–701. https://doi.org/10.1016/j.msec.2010.12.011.

    Article  CAS  Google Scholar 

  14. Nicolini V, Gambuzzi E, Malavasi G, Menabue L, Menziani MC, Lusvardi G, Pedone A, Benedetti F, Luches P, D’Addato S, Valeri S. Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J Phys Chem B. 2015;119:4009–19. https://doi.org/10.1021/jp511737b.

    Article  CAS  PubMed  Google Scholar 

  15. Soluki M, Mahmoudi F, Abdolmaleki A, Asadi A, Namini AS. Cerium oxide nanoparticles as a new neuroprotective agent to promote functional recovery in a rat model of sciatic nerve crush injury. Br J Neurosurg. 2020. https://doi.org/10.1080/02688697.2020.186429.

    Article  PubMed  Google Scholar 

  16. Atkinson I, Seciu-Grama AM, Petrescu S, Culita D, Mocioiu OC, Voicescu M, Mitran RA, Lincu D, Prelipcean AM, Craciunescu O. Cerium-containing mesoporous bioactive glasses (MBGs)-derived scaffolds with drug delivery capability for potential tissue engineering applications. Pharmaceutics. 2022;14(6):1169. https://doi.org/10.3390/pharmaceutics14061169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deliormanlı AM. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2015;26:67. https://doi.org/10.1007/s10856-014-5368-0.

    Article  CAS  PubMed  Google Scholar 

  18. Varini E, Sánchez-Salcedo S, Malavasi G, Lusvardi G, Vallet-Regí M, Salinas AJ. Cerium (III) and (IV) containing mesoporous glasses/alginate beads for bone regeneration: Bioactivity, biocompatibility and reactive oxygen species activity. Mat Sci Eng C. 2019;105:1099. https://doi.org/10.1016/j.msec.2019.109971.

    Article  CAS  Google Scholar 

  19. Hammouda HF, Farag MM, El Deftar MMF, Abdel-Gabbar M, Mohamed BM. Effect of Ce-doped bioactive glass/collagen/chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J Genet Eng Biotechnol. 2022;20(1):33. https://doi.org/10.1186/s43141-022-00302-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saatchi A, Razaghian AA, Moghanian A, Mozafari M. Cerium-doped bioactive glass-loaded chitosan/polyethylene oxide nanofiber with elevated antibacterial properties as a potential wound dressing. Ceram Int. 2021;47:9447–61. https://doi.org/10.1016/j.ceramint.2020.12.078.

    Article  CAS  Google Scholar 

  21. Könen-Adıgüzel S, Ergene S. In vitro evaluation of the genotoxicity of CeO2 nanoparticles in human peripheral blood lymphocytes using cytokinesis-block micronucleus test, comet assay, and gamma H2AX. Toxicol Ind Health. 2018;34(5):1–8. https://doi.org/10.1177/07482337177537.

    Article  Google Scholar 

  22. Auffan M, Rose J, Orsiere T, DeMeo M, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O, Botta A, Wiesner MR, Bottero JY. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology. 2009;3(2):161–71.

    Article  CAS  Google Scholar 

  23. Boccardi E, Philippart A, Juhasz-Bortuzzo JA, Novajra G, Vitale-Brovarone C, Boccaccini AR. Characterization of Bioglass-based foams developed via replication of natural marine sponges. Adv Appl Ceram. 2015;114:S56–62. https://doi.org/10.1179/1743676115Y.0000000036.

    Article  ADS  CAS  Google Scholar 

  24. Zhang Y, Jiang X, Zhang X, Wang D, Zhen L. Cytocompatibility of two porous bioactive glass-ceramic in vitro. J Stomatol. 2013;31(3):294–9.

    Google Scholar 

  25. Ciraldo FE, Arango-Ospina M, Goldmann WH, Beltrán AM, Detsch R, Gruenewald A, Roether JA, Boccaccini AR. Fabrication and characterization of Ag- and Ga-doped mesoporous glass-coated scaffolds based on natural marine sponges with improved mechanical properties. J Biomed Mater Res. 2021;109:309–1327. https://doi.org/10.1002/jbm.a.37123.

    Article  CAS  Google Scholar 

  26. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25. https://doi.org/10.1016/j.biomaterials.2005.11.025.

    Article  CAS  PubMed  Google Scholar 

  27. Atkinson I, Anghel EM, Petrescu S, Seciu AM, Stefan LM, Mocioiu OC, Predoana L, Voicescu M, Somacescu S, Culita D, Zaharescu M. Cerium-containing mesoporous bioactive glasses: Material characterization, in vitro bioactivity, biocompatibility and cytotoxicity evaluation. Micropor Mesopor Mat. 2019;276:76–88. https://doi.org/10.1016/j.micromeso.2018.09.029.

    Article  CAS  Google Scholar 

  28. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15. https://doi.org/10.1016/j.biomaterials.2006.01.017.

    Article  CAS  PubMed  Google Scholar 

  29. Anghel EM, Petrescu S, Mocioiu OC, Cusu JP, Atkinson I. Influence of ceria addition on crystallization behavior and properties of mesoporous bioactive glasses in the SiO2–CaO–P2O5–CeO2 system. Gels. 2022;8:344. https://doi.org/10.3390/gels8060344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deaconu M, Nicu I, Tincu R, Brezoiu AM, Mitran RA, Vasile E, Matei C, Berger D. Tailored doxycycline delivery from MCM-41-type silica carriers. Chem Pap. 2018;72:1869–80. https://doi.org/10.1007/s11696-018-0457-z.

    Article  CAS  Google Scholar 

  31. Ilie D, Iosageanu A, Craciunescu O, Seciu-Grama AM, Sanda C, Oancea F. Free radical scavenging, redox balance and wound healing activity of bioactive peptides derived from proteinase K-assisted hydrolysis of Hypophthalmichthys molitrix skin collagen. Food Technol Biotechnol. 2022;60(3):281–92. https://doi.org/10.17113/ftb.60.03.22.7107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaspar-Pintiliescu A, Oancea A, Cotarlet M, Vasile AM, Bahrim GE, Shaposhnikov S, Craciunescu O, Oprita EI. Angiotensin-converting enzyme inhibition, antioxidant activity and cytotoxicity of bioactive peptides from fermented bovine colostrum. Int J Dairy Technol. 2020;73(1):108–16. https://doi.org/10.1111/1471-0307.12659.

    Article  CAS  Google Scholar 

  33. Craciunescu O, Seciu AM, Zarnescu O. In vitro and in vivo evaluation of a biomimetic scaffold embedding silver nanoparticles for improved treatment of oral lesions. Mat Sci Eng C. 2021;123:112015. https://doi.org/10.1016/j.msec.2021.112015.

    Article  CAS  Google Scholar 

  34. Seciu AM, Craciunescu O, Zarnescu O. Advanced regenerative techniques based on dental pulp stem cells for the treatment of periodontal disease. In Periodontology and Dental Implantology, Jane Manakil (ed), InTechOpen Ltd, London, UK; 2020. pp. 129–148. https://doi.org/10.5772/intechopen.78048.

  35. Chelu M, Musuc AM, Aricov L, Ozon EA, Iosageanu A, Stefan LM, Prelipceanu AM, Popa M, Moreno JC. Antibacterial Aloe vera based biocompatible hydrogel for use in dermatological applications. Int J Mol Sci. 2023;24(4):3893. https://doi.org/10.3390/ijms24043893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stanciuc AM, Gaspar A, Moldovan L, Saviuc C, Popa M, Mărutescu L. In vitro antimicrobial activity of Romanian medicinal plants hydroalcoholic extracts on planktonic and adhered cells. Roum Arch Microbiol Immunol. 2011;70(1):11–4.

    CAS  PubMed  Google Scholar 

  37. Hung GY, Chen PY, Wang CY, Tu CS, Chen CS, Lai PL, Feng KC. Tailoring bioactive and mechanical properties in polycrystalline CaO–SiO2–P2O5 glass-ceramics. Ceram Int. 2023;49(5):7289–98. https://doi.org/10.1016/j.ceramint.2022.10.191.

    Article  CAS  Google Scholar 

  38. Ghaebi PN, Atkin R, Sercombe TB. Bioactivity and biodegradability of high temperature sintered 58S ceramics. J Eur Ceram Soc. 2022;42:3614–23. https://doi.org/10.1016/j.jeurceramsoc.2022.02.051.

    Article  CAS  Google Scholar 

  39. Li L, Hu H, Zhu Y, Zhu M, Liu Z. 3D-printed ternary SiO2-CaO-P2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration. Ceram Int. 2019;45:10997–1005. https://doi.org/10.1016/j.ceramint.2019.02.183.

    Article  CAS  Google Scholar 

  40. Vallet-Regí M, Román J, Padilla S, Doadrio JC, Gil FJ. Bioactivity and mechanical properties of SiO2–CaO–P2O5 glass-ceramics. J Mat Chem. 2005;15:1353–9. https://doi.org/10.1039/B415134H.

    Article  Google Scholar 

  41. Mohan T, Dobaj SA, Beaumont M, Konnerth J, Gurer F, Makuc D, Maver U, Gradisnik L, Plavec J, Kargl R, Stana KK. Generic method for designing self-standing and dual porous 3D bioscaffolds from cellulosic nanomaterials for tissue engineering applications. ACS Appl Bio Mater. 2020;3:1197–209. https://doi.org/10.1021/acsabm.9b01099.

    Article  CAS  PubMed  Google Scholar 

  42. Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ, Lenz ME, Sah RL, Masuda K. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartil. 2006;14:1272–80. https://doi.org/10.1016/j.joca.2006.05.008.

    Article  CAS  Google Scholar 

  43. Zhang K, Yubo FF, Nicholas D, Xiaoming L. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater. 2018;5(2):115–24. https://doi.org/10.1093/rb/rby001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Habibovic P, Yuan HP, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D microenvironment as an essential element for osteoinduction by biomaterials. Biomaterials. 2005;26:3565–75. https://doi.org/10.1016/j.biomaterials.2004.09.056.

    Article  CAS  PubMed  Google Scholar 

  45. Bohner M, Baroud G, Bernstein A, Döbelin N, Galea L, Hesse B, Heuberger R, Meille S, Michel P, von Rechenberg B, Sague J, Seeherman H. Characterization and distribution of mechanically competent mineralized tissue in micropores of beta-tricalcium phosphate bone substitutes. Mater Today. 2017;20:106–15. https://doi.org/10.1016/j.mattod.2017.02.002.

    Article  CAS  Google Scholar 

  46. Reddy S, Dubey AK, Basu B, Guo R, Bhalla AS. Thermal expansion behavior of biocompatible hydroxyapatite-BaTiO3 composites for bone substitutes. Integr Ferroelectr. 2011;131:147–52. https://doi.org/10.1080/10584587.2011.616440.

    Article  ADS  CAS  Google Scholar 

  47. Li HC, Wang DG, Meng XG, Chen CZ. Effect of ZrO2 additions on the crystallization, mechanical and biological properties of MgO–CaO–SiO2–P2O5–CaF2 bioactive glass-ceramics. Colloids Surf B. 2014;118:226–33. https://doi.org/10.1016/j.colsurfb.2014.03.055.

    Article  CAS  Google Scholar 

  48. Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Mat Sci Eng C. 2014;43:153–63. https://doi.org/10.1016/j.msec.2014.07.023.

    Article  CAS  Google Scholar 

  49. Atkinson I, Seciu-Grama AM, Mocioiu OC, Mocioiu AM, Predoana L, Voicescu M, Pandele CJ, Grigorescu RM, Ion RM, Craciunescu O. Preparation and biocompatibility of poly methyl methacrylate (PMMA)-mesoporous bioactive glass (MBG) composite scaffolds. Gels. 2021;7(4):180. https://doi.org/10.3390/gels7040180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghaebi PN, Atkin R, Sercombe TB. Effect of low temperature crystallization on 58S bioactive glass sintering and compressive strength. Ceram Int. 2021;47(21):30349–57. https://doi.org/10.1016/j.ceramint.2021.07.215.

    Article  CAS  Google Scholar 

  51. Sanz-Herrera JA, Boccaccini AR. Modelling bioactivity and degradation of bioactive glass-based tissue engineering scaffolds. Int J Solids Struct. 2011;48:257–68. https://doi.org/10.1016/j.ijsolstr.2010.09.025.

    Article  CAS  Google Scholar 

  52. Nommeots-Nomm A, Hupa L, Rohanová D, Brauer DS. A review of acellular immersion tests on bioactive glasses-influence of medium on ion release and apatite formation. Int J Appl Glass Sci. 2020;11:537–51. https://doi.org/10.1111/ijag.15006.

    Article  CAS  Google Scholar 

  53. Sehnath S, Arjama M, Rajan M, Premkumar K, Karthikeyan K, Jeyaraj M. Mineralization of bioactive marine sponge and electrophoretic deposition on Ti-6Al-4V implant for osteointegration. Surf Coat Technol. 2020;392:125727. https://doi.org/10.1016/j.surfcoat.2020.125727.

    Article  CAS  Google Scholar 

  54. Fermani M, Platania V, Kavasi RM, Karavasili C, Zgouro P, Fatouros D, Chatzinikolaidou M, Bouropoulos N. 3D-printed scaffolds from alginate/methyl cellulose/trimethyl chitosan/silicate glasses for bone tissue engineering. Appl Sci. 2021;11:8677. https://doi.org/10.3390/app11188677.

    Article  CAS  Google Scholar 

  55. Aguiar H, Serra J, González P, León B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids. 2009;355(8):475–80. https://doi.org/10.1016/j.jnoncrysol.2009.01.010.

    Article  ADS  CAS  Google Scholar 

  56. Núñez-Rodríguez LA, Encinas-Romero MA, Gómez-Álvarez A, Valenzuela-García JL, Tiburcio-Munive GC. Evaluation of bioactive properties of α and β wollastonite bioceramics soaked in a simulated body fluid. J Biomater Nanobiotechnol. 2018;9(3):263–76. https://doi.org/10.4236/jbnb.2018.93015.

    Article  CAS  Google Scholar 

  57. Salman SM, Salama SN, Abo-Mosallam HA. The crystallization behavior and bioactivity of wollastonite glass-ceramic based on Na2O–K2O–CaO–SiO2–F glass system. J Asian Ceram Soc. 2015;3(3):255–61. https://doi.org/10.1016/j.jascer.2015.04.004.

    Article  Google Scholar 

  58. Bailey A, Reesman AL. A survey study of the kinetics of wollastonite dissolution in H2O-CO2 and buffered systems at 25 degrees C. Am J Sci. 1971;271:464–72. https://doi.org/10.2475/ajs.271.5.464.

    Article  ADS  CAS  Google Scholar 

  59. Khan AS, Awais M. Low-cost deposition of antibacterial ion-substituted hydroxyapatite coatings onto 316 l stainless steel for biomedical and dental applications. Coatings. 2020;10:880. https://doi.org/10.3390/coatings10090880.

    Article  CAS  Google Scholar 

  60. Raizada P, Shandilya P, Singh P, Thakur P. Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing an H2O2/ZnWO4/CaO catalytic system. J Taibah Univ Sci. 2017;11:689–99. https://doi.org/10.1016/j.jtusci.2016.06.004.

    Article  Google Scholar 

  61. Zeng L, An L, Wu X. Modelling drug-carrier interaction in the drug release from nanocarriers. J drug deliv. 2011;15:370308. https://doi.org/10.1155/2011/370308.

    Article  CAS  Google Scholar 

  62. Mitran RA, Matei C, Berger D, Băjenaru L, Moisescu MG. Controlling drug release from mesoporous silica through an amorphous, nanoconfined 1-tetradecane layer. Eur J Pharm Biopharm. 2018;127:318–25. https://doi.org/10.1016/j.ejpb.2018.02.020.

    Article  CAS  PubMed  Google Scholar 

  63. Lu B, Zhu DY, Yin JH, Xu H, Zhang CQ, Ke QF, Gao YS, Guo YP. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating ERK signaling pathway. Biofabrication. 2019;11:025012. https://doi.org/10.1088/1758-5090/ab0676.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Mouton W, Josse J, Jacqueline C, Abad L, Trouillet-Assant S, Caillon J, Bouvard D, Bouchet M, Laurent F, Diot A. Staphylococcus aureus internalization impairs osteoblastic activity and early differentiation process. Sci Rep. 2021;11:17685. https://doi.org/10.1038/s41598-021-97246-y.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kurtuldu F, Kankov H, Beltran AM, Liverani L, Galusek D, Boccaccini AR. Anti-inflammatory and antibacterial activities of cerium-containing mesoporous bioactive glass nanoparticles for drug-free biomedical applications. Mater Today Bio. 2021;12:100150. https://doi.org/10.1016/j.mtbio.2021.100150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akhtar MA, Mariotti CE, Conti B, Boccaccini AR. Electrophoretic deposition of ferulic acid loaded bioactive glass/chitosan as antibacterial and bioactive composite coatings. Surf Coat Technol. 2021;405:126657. https://doi.org/10.1016/j.surfcoat.2020.126657.

    Article  CAS  Google Scholar 

  67. Goh YF, Alshemary AZ, Akram M, Kadir MRA, Hussain R. In vitro characterization of antibacterial bioactive glass containing ceria. Ceram Int. 2014;40:729–37. https://doi.org/10.1016/j.ceramint.2013.06.062.

    Article  CAS  Google Scholar 

  68. Chen A, Shi Q, Ouyang Y, Chen Y. Effect of Ce3+ on membrane permeability of Escherichia coli cell. J Rare Earths. 2012;30:947–51. https://doi.org/10.1016/S1002-0721(12)60159-8.

    Article  CAS  Google Scholar 

  69. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol. 2006;40:6151–6. https://doi.org/10.1021/es060999b.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Research, Innovation, and Digitization, Program Nucleu, contract no. PN 23 02/2023, Program 1-Development of the National R&D System, Subprogram 1.2-Institutional Performance-Projects for Excellence Financing in RDI, contract no. 2PFE/2021, and Micro-CT investigations were possible because of the European Regional Development Fund through the Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED).

Funding

The authors would like to thank the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) for funding this work, grant number PN-III-P2-2.1-PED-2019–0598, no. 258 PED/2020.

Author information

Authors and Affiliations

Authors

Contributions

Irina Atkinson: Conceptualization, methodology, formal analysis, writing of the original draft. Ana Maria Seciu Grama: Conceptualization, Methodology, Formal analysis, writing of the original draft. Andrada Serafim: Methodology and Formal analysis. Simona Petrescu: Methodology, Formal analysis. Mariana Voicescu: Methodology, Formal analysis. Elena Maria Anghel: Methodology, Formal analysis. Oana Catalina Mocioiu: Methodology, Formal analysis. Cornelia Marinescu: Methodology, Formal analysis, and revision. Raul Augustin Mitran: Methodology, Formal analysis, Jeanina Pandele Cusu: Methodology, Formal analysis, writing and revision, Daniel Lincu: Formal analysis. Ana-Maria Prelipcean: Methodology, Formal analysis. Oana Craciunescu: Conceptualization, Methodology, Formal analysis.

Corresponding authors

Correspondence to Irina Atkinson or Ana-Maria Seciu-Grama.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agreed with the final version of this manuscript and with the current submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2718 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, I., Seciu-Grama, AM., Serafim, A. et al. Bioinspired 3D scaffolds with antimicrobial, drug delivery, and osteogenic functions for bone regeneration. Drug Deliv. and Transl. Res. 14, 1028–1047 (2024). https://doi.org/10.1007/s13346-023-01448-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01448-y

Keywords

Navigation