Skip to main content

Advertisement

Log in

The promise of microneedle technologies for drug delivery

  • Inspirational Note
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Microneedle (MN) technologies offer the opportunity to improve patient access and target delivery of drugs and vaccines to specific tissues. When in the form of skin patches, MNs can be administered by personnel with minimal training, or could be self-administered by patients, which can improve access to medication, especially those usually requiring injection. Because MNs are small (usually sub-millimetre), they can be used for precise tissue targeting. MN patches have been extensively studied to administer vaccines and drugs in preclinical work as well as in multiple clinical trials. When formulated with biodegradable polymer, MNs can enable long-acting therapies by slowly releasing drug as the MNs biodegrade. Targeted drug delivery by hollow MNs has resulted in FDA-approved products that are able to inject vaccines to skin-resident immune cells to improve immune response and to target specific parts of the eye (e.g., suprachoroidal space) for increased efficacy and avoidance of side effects in other parts of the eye. Cosmetic products based on MN technologies are already in widespread use, mostly as anti-aging agents. With extensive research coupled with FDA-approved products, MN technology promises to continue is growth in research leading to products that can benefit patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Contract Pharma. Injectable drug delivery trends. https://www.contractpharma.com/issues/2021-03-01/view_features/injectable-drug-delivery-trends/. Accessed 10 Apr 2023.

  2. US Food & Drug Administration. Novel drug approvals for 2021. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021. Accessed 24 Apr 2023.

  3. Simoens S, Huys I. R&D costs of new medicines: a landscape analysis. Front Med. 2021;8:760762. https://doi.org/10.3389/fmed.2021.760762.

    Article  Google Scholar 

  4. The UK National Health Service. The NHS long term plan. https://www.longtermplan.nhs.uk/online-version/chapter-1-a-new-service-model-for-the-21st-century/1-we-will-boost-out-of-hospital-care-and-finally-dissolve-the-historic-divide-between-primary-and-community-health-services/. Accessed 4 May 2023.

  5. New R. Oral delivery of biologics via the intestine. Pharmaceutics. 2021;13:18. https://doi.org/10.3390/pharmaceutics13010018.

    Article  CAS  Google Scholar 

  6. Chaudhary K, Patel MM, Mehta PJ. Long-acting injectables: current perspectives and future promise. Crit Rev Ther Drug Carrier Syst. 2019;36:137–81. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2018025649.

    Article  PubMed  Google Scholar 

  7. The National Institute of Clinical Excellence. The British National Formulary. https://bnf.nice.org.uk/. Accessed 10 Apr 2023.

  8. Kesavadev J, Saboo B, Krishna MB, Krishnan G. Evolution of insulin delivery devices: from syringes, pens, and pumps to DIY artificial pancreas. Diabetes Ther. 2020;11:1251–69. https://doi.org/10.1007/s13300-020-00831-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Health Care without Harm. Treating sharps waste. https://noharm-global.org/issues/global/treating-sharps-waste. Accessed 30 Apr 2023.

  10. Bouya S, Balouchi A, Rafiemanesh H, Amirshahi M, Dastres M, Moghadam MP, Behnamfar N, Shyeback M, Badakhsh M, Allahyari J, Al Mawali A, Ebadi A, Dezhkam A, Daley KA. Global prevalence and device related causes of needle stick injuries among healthcare workers: a systematic review and meta-analysis. Ann Glob Health. 2020;86:35. https://doi.org/10.5334/aogh.2698.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nursing Notes. Sharps injuries rise due to ‘lack of training’ and pressures of the pandemic. https://nursingnotes.co.uk/news/clinical/sharps-injuries-rise-due-to-lack-of-training-and-pressures-of-the-pandemic/. Accessed 15 Apr 2023.

  12. World Health Organisation. WHO calls for worldwide use of “smart” syringes. https://nursingnotes.co.uk/news/clinical/sharps-injuries-rise-due-to-lack-of-training-and-pressures-of-the-pandemic/. Accessed 30 Apr 2023.

  13. Pharmajet. Needle-free makes injections better. https://pharmajet.com/needle-free-technology/. Accessed 30 Apr 2023.

  14. Gavi. Needle phobia could be the cause of 10% of COVID vaccine hesitancy in the UK – new research. https://www.gavi.org/vaccineswork/needle-phobia-could-be-cause-10-covid-vaccine-hesitancy-uk-new-research. Accessed 24 Apr 2023.

  15. VRR. The role of cold chain logistics in the pharmaceutical industry. https://blog.vrr.aero/the-role-of-cold-chain-logistics-in-the-pharmaceutical-industry/. Accessed 8 May 2023.

  16. Kulkarni D, Damiri F, Rojekar S, Zehravi M, Ramproshad S, Dhoke D, Musale S, Mulani AA, Modak P, Paradhi R, Vitore J, Rahman MH, Berrada M, Giram PS, Cavalu S. Recent advancements in MN technology for multifaceted biomedical applications Pharmaceutics. 2022;14:1097. https://doi.org/10.3390/pharmaceutics14051097.

    Article  CAS  PubMed  Google Scholar 

  17. Vaccine microarray patches (MAPs): public summary of the VIPS Alliance Action Plan. https://www.gavi.org/sites/default/files/about/market-shaping/VIPS-Alliance-Action-Plan-for-MAPS_Public-Summary.pdf. Accessed 7 Jul 2023.

  18. Sheng T, Luo B, Zhang W, Ge X, Yu J, Zhang Y, Gu Z. Microneedle-mediated vaccination: innovation and translation. Adv Drug Deliv Rev. 2021;179:113919. https://doi.org/10.1016/j.addr.2021.113919.

    Article  CAS  PubMed  Google Scholar 

  19. Rouphael NG, Paine M, Mosley R, Henry S, McAllister DV, Kalluri H, Pewin W, Frew PM, Yu T, Thornburg NJ, Kabbani S, Lai L, Vassilieva EV, Skountzou I, Compans RW, Mulligan MJ, Prausnitz MR, TIV-MNP 2015 Study Group. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390:649–58. https://doi.org/10.1016/S0140-6736(17)30575-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernando GJP, Hickling J, Jayashi Flores CM, Griffin P, Anderson CD, Skinner SR, Davies C, Witham K, Pryor M, Bodle J, Rockman S, Frazer IH, Forster AH. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine. 2018;36:3779–88. https://doi.org/10.1016/j.vaccine.2018.05.053.

    Article  CAS  PubMed  Google Scholar 

  21. Adigweme I, Akpalu E, Yisa M, Donkor S, Jarju LB, Danso B, Mendy A, Jeffries D, Njie A, Bruce A, Royals M, Goodson JL, Prausnitz MR, McAllister D, Rota PA, Henry S, Clarke E. Study protocol for a phase 1/2, single-centre, double-blind, double-dummy, randomized, active-controlled, age de-escalation trial to assess the safety, tolerability and immunogenicity of a measles and rubella vaccine delivered by a microneedle patch in healthy adults (18 to 40 years), measles and rubella vaccine-primed toddlers (15 to 18 months) and measles and rubella vaccine-naïve infants (9 to 10 months) in The Gambia [Measles and Rubella Vaccine Microneedle Patch Phase 1/2 Age De-escalation Trial]. Trials. 2022;14;23(1):775. https://doi.org/10.1186/s13063-022-06493-5.

  22. Yavuz B, Chambre L, Harrington K, Kluge J, Valenti L, Kaplan DL. Silk fibroin MN patches for the sustained release of levonorgestrel. ACS Appl Bio Mater. 2020;3:5375–82. https://doi.org/10.1021/acsabm.0c00671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable MN patch for the sustained release of a contraceptive. Nat Biomed Eng. 2019;3:220–9. https://doi.org/10.1038/s41551-018-0337-4.

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Tang J, Terry RN, Li S, Brunie A, Callahan RL, Noel RK, Rodríguez CA, Schwendeman SP, Prausnitz MR. Long-acting reversible contraception by effervescent MN patch. Sci Adv. 2019;5:1–12. https://doi.org/10.1126/sciadv.aaw8145.

    Article  CAS  Google Scholar 

  25. He M, Yang G, Zhang S, Zhao X, Gao Y. Dissolving MNs loaded with etonogestrel microcrystal particles for intradermal sustained delivery. J Pharm Sci. 2018;107:1037–45. https://doi.org/10.1016/j.xphs.2017.11.013.

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Chen JY, Terry RN, Tang J, Romanyuk A, Schwendeman SP, Prausnitz MR. Core-shell microneedle patch for six-month controlled-release contraceptive delivery. J Control Release. 2022;347:489–99. https://doi.org/10.1016/j.jconrel.2022.04.051.

    Article  CAS  PubMed  Google Scholar 

  27. Volpe-Zanutto F, Vora LK, Tekko IA, McKenna PE, Permana AD, Sabri AH, Anjani QK, McCarthy HO, Paredes AJ, Donnelly RF. Hydrogel-forming microarray patches with cyclodextrin drug reservoirs for long-acting delivery of poorly soluble cabotegravir sodium for HIV pre-exposure prophylaxis. J Control Release. 2022;348:771–85. https://doi.org/10.1016/j.jconrel.2022.06.028.

    Article  CAS  PubMed  Google Scholar 

  28. Moffatt K, Tekko IA, Vora L, Volpe-Zanutto F, Hutton ARJ, Mistilis J, Jarrahian C, Akhavein N, Weber AD, McCarthy HO, Donnelly RF. Development and evaluation of dissolving microarray patches for co-administered and repeated intradermal delivery of long-acting rilpivirine and cabotegravir nanosuspensions for paediatric HIV antiretroviral therapy. Pharm Res. 2022. https://doi.org/10.1007/s11095-022-03408-6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tekko IA, Vora LK, Volpe-Zanutto F, Moffatt K, Jarrahian C, McCarthy HO, Donnelly RF. Novel bilayer microarray patch-assisted long-acting micro-depot cabotegravir intradermal delivery for HIV pre-exposure prophylaxis. Adv Funct Mat. 2021;2022(9):2106999. https://doi.org/10.1002/adfm.202106999.

    Article  CAS  Google Scholar 

  30. McCrudden MTC, Larrañeta E, Clark A, Jarrahian C, Rein-Weston A, Lachau-Durand S, Niemeijer N, Williams P, Haeck C, McCarthy HO, Zehrung D, Donnelly RF. Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J Control Release. 2018;292:119–29. https://doi.org/10.1016/j.jconrel.2018.11.002.

    Article  CAS  Google Scholar 

  31. https://www.reportsanddata.com. Accessed 8 May 2023.

  32. Courtenay AJ, McCrudden MTC, McAvoy KJ, McCarthy HO, Donnelly RF. MN-mediated transdermal delivery of bevacizumab. Mol Pharm. 2018;15:3545–56. https://doi.org/10.1021/acs.molpharmaceut.8b00544.

    Article  CAS  PubMed  Google Scholar 

  33. Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, Raj VS, Epperly MW, Klimstra WB, Haagmans BL, Korkmaz E, Falo LD Jr, Gambotto A. MN array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. 2020;55:102743. https://doi.org/10.1016/j.ebiom.2020.102743.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen BZ, Zhang LQ, Xia YY, Zhang XP, Guo XD. A basal-bolus insulin regimen integrated MN patch for intraday postprandial glucose control. Sci Adv. 2020;6:eaba7260. https://doi.org/10.1126/sciadv.aba7260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qu M, Kim HJ, Zhou X, Wang C, Jiang X, Zhu J, Xue Y, Tebon P, Sarabi SA, Ahadian S, Dokmeci MR, Zhu S, Gu Z, Sun W, Khademhosseini A. Biodegradable MN patch for transdermal gene delivery. Nanoscale. 2020;12:16724–9. https://doi.org/10.1039/D0NR02759F.

    Article  CAS  PubMed  Google Scholar 

  36. Hutton ARJ, Ubah O, Barelle C, Donnelly RF. Enhancing the transdermal delivery of ‘next generation’ variable new antigen receptors using microarray patch technology: a proof-of-concept study. J Pharm Sci. 2022;111:3362–76. https://doi.org/10.1016/j.xphs.2022.08.027.

    Article  CAS  PubMed  Google Scholar 

  37. Tran KTM, Le TT, Agrahari V, Peet MM, Ouattara LA, Anderson SM, Le-Kim TH, Singh ON, Doncel GF, Nguyen TD. Single-administration long-acting microarray patch with ultrahigh loading capacity and multiple releases of thermally stable antibodies. Mol Pharm. 2023;20(5):2352–61. https://doi.org/10.1021/acs.molpharmaceut.2c00919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: a perspective in biomedical applications. Int J Pharm. 2021;599:120455. https://doi.org/10.1016/j.ijpharm.2021.120455.

    Article  CAS  PubMed  Google Scholar 

  39. Tsals I, Jarrahian C, Snyder FE, Saganic L, Saxon E, Zehrung D, Zimmerman G, Papania M, Klaff L. Clinical performance and safety of adapters for intradermal delivery with conventional and autodisable syringes. Vaccine. 2015;33:4705–11. https://doi.org/10.1016/j.vaccine.2015.04.095.

    Article  PubMed  Google Scholar 

  40. Robertson CA, Tsang P, Landolfi VA, Greenberg DP. Fluzone® intradermal quadrivalent influenza vaccine. Expert Rev Vaccines. 2016;15:1245–53. https://doi.org/10.1080/14760584.2016.1215246.

    Article  CAS  PubMed  Google Scholar 

  41. Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:58–66. https://doi.org/10.1016/j.addr.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thomas J, Kim L, Albini T, Yeh S. Triamcinolone acetonide injectable suspension for suprachoroidal use in the treatment of macular edema associated with uveitis. Expert Rev Ophthalmol. 2022;17:165–73. https://doi.org/10.1080/17469899.2022.2114456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hou A, Cohen B, Haimovic A, Elbuluk N. Microneedling: a comprehensive review. Dermatol Surg. 2017;43:321–39. https://doi.org/10.1097/DSS.0000000000000924.

    Article  CAS  PubMed  Google Scholar 

  44. Jang M, Baek S, Kang G, Yang H, Kim S, Jung H. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity. Int J Cosmet Sci. 2020;42:302–9. https://doi.org/10.1111/ics.12617.

    Article  CAS  PubMed  Google Scholar 

  45. Microneedling. https://www.amazon.com/microneedling/s?k=microneedling. Accessed 5 Jul 2023.

  46. Market size, share & trends analysis report by needle material (silicon, metal), by product (dermarollers, dermapen), by type (laser, RF), by application, by region, and segment forecasts, 2021 – 2028. https://www.grandviewresearch.com/industry-analysis/microneedling-market-report. Accessed 5 Jul 2023.

  47. Ingrole RSJ, Azizoglu E, Dul M, Birchall JC, Gill HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials. 2021;267:120491. https://doi.org/10.1016/j.biomaterials.2020.120491.

    Article  CAS  PubMed  Google Scholar 

  48. Peyraud N, Zehrung D, Jarrahian C, Frivold C, Orubu T, Giersing B. Potential use of microarray patches for vaccine delivery in low- and middle- income countries. Vaccine. 2019;37:4427–34. https://doi.org/10.1016/j.vaccine.2019.03.035.

    Article  CAS  PubMed  Google Scholar 

  49. Blicharz TM, Gong P, Bunner BM, Chu LL, Leonard KM, Wakefield JA, Williams RE, Dadgar M, Tagliabue CA, El Khaja R, Marlin SL, Haghgooie R, Davis SP, Chickering DE, Bernstein H. Microneedle-based device for the one-step painless collection of capillary blood samples. Nat Biomed Eng. 2018;2:151–7. https://doi.org/10.1038/s41551-018-0194-1.

    Article  CAS  PubMed  Google Scholar 

  50. Friedel M, Thompson IAP, Kasting G, Polsky R, Cunningham D, Soh HT, Heikenfeld J. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng. 2023 Jan 19. https://doi.org/10.1038/s41551-022-00998-9. Online ahead of print.

  51. Tehrani F, Teymourian H, Wuerstle B, Kavner J, Patel R, Furmidge A, Aghavali R, Hosseini-Toudeshki H, Brown C, Zhang F, Mahato K, Li Z, Barfidokht A, Yin L, Warren P, Huang N, Patel Z, Mercier PP, Wang J. An integrated wearable MN array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat Biomed Eng. 2022;6:1214–24. https://doi.org/10.1038/s41551-022-00887-1.

    Article  CAS  PubMed  Google Scholar 

  52. Dixon RV, Skaria E, Lau WM, Manning P, Birch-Machin MA, Moghimi SM, Ng KW. MN-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B. 2021;11:2344–61. https://doi.org/10.1016/j.apsb.2021.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87:922–5. https://doi.org/10.1021/js980042+. Erratum in: J Pharm Sci 1998 Sep;88(9):948.

    Article  CAS  PubMed  Google Scholar 

  54. PATH. Centre of Excellence for Microarray Patches. https://www.path.org/resources/path-center-excellence-microarray-patch-technology/. Accessed 8 May 2023.

Download references

Acknowledgements

Ryan Donnelly is an inventor of patents that have been licenced to companies developing microneedle-based products and is a paid advisor to companies developing microneedle-based products. The resulting potential conflict of interest has been disclosed and is managed by Queen’s University Belfast. Mark Prausnitz is an inventor of patents, consultant to companies, and co-founder of companies based on microneedle technology. The resulting possible conflict of interest is disclosed here and is managed by Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryan F. Donnelly or Mark R. Prausnitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnelly, R.F., Prausnitz, M.R. The promise of microneedle technologies for drug delivery. Drug Deliv. and Transl. Res. 14, 573–580 (2024). https://doi.org/10.1007/s13346-023-01430-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01430-8

Keywords

Navigation