Skip to main content

Advertisement

Log in

Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Kaempferol (KAE) is a naturally occurring flavonoid compound with antitumor activity. However, the low aqueous solubility, poor chemical stability, and suboptimal bioavailability greatly restrict its clinical application in cancer therapy. To address the aforementioned limitations and augment the antitumor efficacy of KAE, we developed a kaempferol nanosuspensions (KAE-NSps) utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a stabilizing agent, screened the optimal preparation process, and conducted a comprehensive investigation of their fundamental properties as well as the antitumor effects in the study. The findings indicated that the particle size was 186.6 ± 2.6 nm of the TPGS-KAE-NSps optimized, the shape of which was fusiform under the transmission electron microscope. The 2% (w/v) glucose was used as the cryoprotectant for TPGS-KAE-NSps, whose drug loading content was 70.31 ± 2.11%, and the solubility was prominently improved compared to KAE. The stability and biocompatibility of TPGS-KAE-NSps were favorable and had a certain sustained release effect. Moreover, TPGS-KAE-NSps clearly seen to be taken in the cytoplasm exhibited a stronger cytotoxicity and suppression of cell migration, along with increased intracellular ROS production and higher apoptosis rates compared to KAE in vitro cell experiments. In addition, TPGS-KAE-NSps had a longer duration of action in mice, significantly improved bioavailability, and showed a stronger inhibition of tumor growth (the tumor inhibition rate of high dose intravenous injection group was 68.9 ± 1.46%) than KAE with no obvious toxicity in 4T1 tumor-bearing mice. Overall, TPGS-KAE-NSps prepared notably improved the defect and the antitumor effects of KAE, making it a promising nanodrug delivery system for KAE with potential applications as a clinical antitumor drug.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data will be available on request to the authors.

References

  1. Chandra RA, Keane FK, Voncken FEM, Thomas CR. Contemporary radiotherapy: present and future. Lancet. 2021;398:171–84.

    Article  PubMed  Google Scholar 

  2. Zheng P-P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: critical research-practice gaps, challenges, and insights. Med Res Rev. 2018;38:325–76.

    Article  CAS  PubMed  Google Scholar 

  3. Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv. 2022;29:2130–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu H, Jiapaer Z, Meng F, Wu W, Hou C, Duan M, et al. Construction of high loading natural active substances nanoplatform and application in synergistic tumor therapy. IJN. 2022;17:2647–59.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mao Q-Q, Xu X-Y, Shang A, Gan R-Y, Wu D-T, Atanasov AG, et al. Phytochemicals for the prevention and treatment of gastric cancer: effects and mechanisms. IJMS. 2020;21:570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, et al. The role of natural products and their multitargeted approach to treat solid cancer. Cells. 2022;11:2209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, et al. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr. 2021;1–17.

  8. Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, et al. Kaempferol: a key emphasis to its anticancer potential. Molecules. 2019;24:2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li L, Wang R, Hu H, Chen X, Yin Z, Liang X, et al. The antiviral activity of kaempferol against pseudorabies virus in mice. BMC Vet Res. 2021;17:247.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma N, Biswas S, Al-Dayan N, Alhegaili AS, Sarwat M. Antioxidant role of kaempferol in prevention of hepatocellular carcinoma. Antioxidants. 2021;10:1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W, et al. Kaempferol attenuates ROS-induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules. 2018;23:2592.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang G, Xing J, Aikemu B, Sun J, Zheng M. Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer. Oncol Rep. 2021;45:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo H, Rankin GO, Li Z, DePriest L, Chen YC. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 2011;128:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Da J, Xu M, Wang Y, Li W, Lu M, Wang Z. Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Anal Cell Pathol. 2019;2019:1–10.

    Article  Google Scholar 

  15. Nandi SK, Pradhan A, Das B, Das B, Basu S, Mallick B, et al. Kaempferol attenuates viability of ex-vivo cultured post-NACT breast tumor explants through downregulation of p53 induced stemness, inflammation and apoptosis evasion pathways. Pathol - Res Pract. 2022;237:154029.

  16. Felice MR, Maugeri A, De Sarro G, Navarra M, Barreca D. Molecular pathways involved in the anti-cancer activity of flavonols: a focus on myricetin and kaempferol. IJMS. 2022;23:4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin Y, Zhai Z, Jia H, Lai J, Si X, Wu Z. Kaempferol attenuates diquat-induced oxidative damage and apoptosis in intestinal porcine epithelial cells. Food Funct. 2021;12:6889–99.

    Article  CAS  PubMed  Google Scholar 

  18. Bian Y, Lei J, Zhong J, Wang B, Wan Y, Li J, et al. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J Nutr Biochem. 2022;99:108840.

  19. Arabyan E, Hakobyan A, Hakobyan T, Grigoryan R, Izmailyan R, Avetisyan A, et al. Flavonoid library screening reveals kaempferol as a potential antiviral agent against African swine fever virus. Front Microbiol. 2021;12:736780.

  20. Özkütük AS. Antimicrobial effects of carnosic acid, kaempferol and luteolin on biogenic amine production by spoilage and food-borne pathogenic bacteria. Food Biosci. 2022;46:101588.

  21. Yang W, Xie D, Liang Y, Chen N, Xiao B, Duan L, et al. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol. J Drug Deliv Sci Technol. 2022;68:103025.

    Article  CAS  Google Scholar 

  22. Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev. 2021;179:114032.

  23. Li S, Wu Y, Liu S, Wu T, Liu G, Li T, et al. A multifunctional platinum( iv ) and cyanine dye-based polyprodrug for trimodal imaging-guided chemo–phototherapy. J Mater Chem B. 2022;10:1031–41.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Li H, Bian Y, Wang Z, Chen G, Zhang X, et al. Bioorthogonal catalytic patch. Nat Nanotechnol. 2021;16:933–41.

    Article  CAS  PubMed  Google Scholar 

  25. Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal. 2020;10:221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu R, Jiang C, Zhou L, Li B, Hu Y, Guo Y, et al. Fabrication of stable apigenin nanosuspension with PEG 400 as antisolvent for enhancing the solubility and bioavailability. AAPS PharmSciTech. 2022;23:12.

    Article  CAS  Google Scholar 

  27. Zhang T, Li X, Xu J, Shao J, Ding M, Shi S. Preparation, characterization, and evaluation of breviscapine nanosuspension and its freeze-dried powder. Pharmaceutics. 2022;14:923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ao H, Li Y, Li H, Wang Y, Han M, Guo Y, et al. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug Deliv. 2020;27:816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elbaz NM, Tatham LM, Owen A, Rannard S, McDonald TO. Redispersible nanosuspensions as a plausible oral delivery system for curcumin. Food Hydrocoll. 2021;121:107005.

    Article  CAS  Google Scholar 

  30. Na Y-G, Pham TMA, Byeon J-J, Kim M-K, Han M-G, Baek J-S, et al. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int J Pharm. 2020;581:119287.

  31. Qiao Y, Cao Y, Yu K, Zong L, Pu X. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int J Pharm. 2020;589:119830.

  32. Tao X, Shi H, Cao A, Cai L. Influence of polyphenol-metal ion-coated ovalbumin/sodium alginate composite nanoparticles on the encapsulation of kaempferol/tannin acid. Int J Biol Macromol. 2022;209:1288–97.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta N, Kamath S M, Rao SK, D J, Patil S, Gupta N, et al. Kaempferol loaded albumin nanoparticles and dexamethasone encapsulation into electrospun polycaprolactone fibrous mat – concurrent release for cartilage regeneration. J Drug Deliv Sci Technol. 2021;64:102666.

  34. Kazmi I, Al-Abbasi FA, Afzal M, Altayb HN, Nadeem MS, Gupta G. Formulation and evaluation of kaempferol loaded nanoparticles against experimentally induced hepatocellular carcinoma: in vitro and in vivo studies. Pharmaceutics. 2021;13:2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma Y, Liu J, Cui X, Hou J, Yu F, Wang J, et al. Hyaluronic acid modified nanostructured lipid carrier for targeting delivery of kaempferol to NSCLC: preparation, optimization, characterization, and performance evaluation in vitro. Molecules. 2022;27:4553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haeri V, Karimi E, Oskoueian E. Synthesized nanoliposome‐encapsulated kaempferol attenuates liver health parameters and gene expression in mice challenged by cadmium‐induced toxicity. Biotech App Biochem. 2022;bab.2368.

  37. S Qian Y, Ramamurthy S, Candasamy M, Md S, H Kumar R, S Meka V. Production, characterization and evaluation of kaempferol nanosuspension for improving oral bioavailability. CPB. 2016;17:549–55.

  38. Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202.

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv. 2021;28:1226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xue X, Liu H, Wang S, Hu Y, Huang B, Li M, et al. Neutrophil-erythrocyte hybrid membrane-coated hollow copper sulfide nanoparticles for targeted and photothermal/anti-inflammatory therapy of osteoarthritis. Compos B Eng. 2022;237:109855.

  41. Sawant SS, Patil SM, Shukla SK, Kulkarni NS, Gupta V, Kunda NK. Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation. Drug Deliv Transl Res. 2022;12:2474–87.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Yin X, Li C, Yin X, Xue Q, Ding L, et al. A multifunctional photoacoustic/fluorescence dual-mode-imaging gold-based theranostic nanoformulation without external laser limitations. Adv Mater. 2022;34:2110690.

    Article  CAS  Google Scholar 

  43. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:57.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen H, Deng M, Xie L, Liu K, Zhang X, Li X. Preparation and characterization of quercetin nanosuspensions using gypenosides as novel stabilizers. J Drug Deliv Sci Technol. 2022;67:102962.

    Article  CAS  Google Scholar 

  45. Chen X, Gu J, Sun L, Li W, Guo L, Gu Z, et al. Efficient drug delivery and anticancer effect of micelles based on vitamin E succinate and chitosan derivatives. Bioact Mater. 2021;6:3025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li N, Fu T, Fei W, Han T, Gu X, Hou Y, et al. Vitamin E D-alpha-tocopheryl polyethylene glycol 1000 succinate-conjugated liposomal docetaxel reverses multidrug resistance in breast cancer cells. J Pharm Pharmacol. 2019;71:1243–54.

    Article  CAS  PubMed  Google Scholar 

  47. Tang M, Huang Y, Liang X, Tao Y, He N, Li Z, et al. Sorafenib-loaded PLGA-TPGS nanosystems enhance hepatocellular carcinoma therapy through reversing P-glycoprotein-mediated multidrug resistance. AAPS PharmSciTech. 2022;23:130.

    Article  CAS  PubMed  Google Scholar 

  48. Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50:5397–434.

  49. Singh P, Lim B. Targeting apoptosis in cancer. Curr Oncol Rep. 2022;24:273–84.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu B, Li Y, Lin Z, Zhao M, Xu T, Wang C, et al. Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Res Lett. 2016;11:198.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yao H, Mu X, Wei Z, Li X, Wu L, Jin Y, et al. Facile approach for surfactant-free synthesis of Au@ginsenoside Rh2 nanoparticles and researches on anticancer activity. Cancer Nanotechnol. 2022;13:35.

    Article  CAS  Google Scholar 

  52. Gu M, Yin F, Qin Y, Tian Y, Xiu X, Shen H, et al. Synergistic antitumor efficacy of PD-1-conjugated PTX- and ZSQ-loaded nanoliposomes against multidrug-resistant liver cancers. Drug Deliv Transl Res. 2022;12:2550–60.

    Article  CAS  PubMed  Google Scholar 

  53. Peng Y, Yu S, Wang Z, Huang P, Wang W, Xing J. Nanogels loading curcumin in situ through microemulsion photopolymerization for enhancement of antitumor effects. J Mater Chem B. 2022;10:3293–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mengjing Li from Shiyanjia Lab (www.shiyanjia.com) for the TG-DSC test. The authors are also thankful to Dr. Xue Xu for his technical support to HPLC.

Funding

This work was supported by the National Natural Science Foundation of China (11575107, 81922037, 22003038, and 21371115), the Shanghai University-Universal Medical Imaging Diagnostic Research Foundation (19H00100), and the Shanghai Biomedical Science and Technology Support Project (19441903600).

Author information

Authors and Affiliations

Authors

Contributions

Work conception and design: Wen He, Chenchen Li, and Yanli Wang; writing, original draft: Wen He and Junfeng Zhang; writing, review and editing: Chenchen Li and Yanli Wang; material synthesis and characterization: Wen He and Lin Zhan; cell experiment: Wen He, Yinghua Wu, and Jiale Ju; animal experiment: Wen He, Junfeng Zhang, and Yuxi Zhang.

Corresponding authors

Correspondence to Chenchen Li or Yanli Wang.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were performed in accordance with the National Regulations of China for the Care and Use of Laboratory Animals and were approved by the Shanghai University Animal Care and Use Institutional Committee.

Consent for publication

All authors agree to publish this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3007 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Zhang, J., Ju, J. et al. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions. Drug Deliv. and Transl. Res. 13, 2885–2902 (2023). https://doi.org/10.1007/s13346-023-01357-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01357-0

Keywords

Navigation