Skip to main content

Advertisement

Log in

Fabrication of pure-drug microneedles for delivery of montelukast sodium

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Dissolving microneedle (MN) patches are usually formulated with a blend of drug and excipients added for mechanical strength and drug stabilization. In this study, we developed MNs made of pure drug to maximize drug loading capacity. MN patches were fabricated for transdermal delivery of montelukast sodium (MS) which is used to treat asthma and allergic rhinitis. We developed three different fabrication methods — solvent casting, melt casting, and solvent washing — and determined that filling molds with MS powder followed by a solvent washing method enabled MS to be loaded selectively to the MNs. Drug localization was confirmed with Raman imaging. MNs were able to penetrate in vitro and ex vivo skin models, and maintained strong mechanical properties during 6 months’ storage at 22 °C. MS was also stable and compatible with the formulation used for the patch backing layer after 3 months’ storage at 40 °C. MS delivery efficiency into skin was 55%, which enabled delivery of 3.2 mg MS into porcine skin ex vivo, which is in the range of MS doses in human clinical use. We conclude that the solvent washing method can be used to prepare MNs containing pure drug, such as MS at milligram doses in a ~ 1 cm2 MN patch.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Data are available by contacting the authors.

Code availability

Not applicable.

References

  1. Caminati M, Morais-Almeida M, Bleecker E, Ansotegui I, Canonica GW, Bovo C, et al. Biologics and global burden of asthma: a worldwide portrait and a call for action. World Allergy Organ J. 2021. https://doi.org/10.1016/j.waojou.2020.100502.

    Article  PubMed  PubMed Central  Google Scholar 

  2. May JR, Dolen WK. Management of allergic rhinitis: a review for the community pharmacist. Clin Ther. 2017. https://doi.org/10.1016/j.clinthera.2017.10.006.

    Article  PubMed  Google Scholar 

  3. Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy. 2006. https://doi.org/10.1111/j.1365-2222.2006.02498.x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Panchal R, Patel H, Patel V, Joshi P, Parikh A. Formulation and evalution of montelukast sodium - chitosan based spray dried microspheres for pulmonary drug delivery. J Pharm Bioallied Sci. 2012. https://doi.org/10.4103/0975-7406.94160.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barbosa JS, Almeida Paz FA, Braga SS. Montelukast medicines of today and tomorrow: from molecular pharmaceutics to technological formulations. Drug Deliv. 2016. https://doi.org/10.3109/10717544.2016.1170247.

    Article  PubMed  Google Scholar 

  6. Azizoglu E, Ozer O. Fabrication of montelukast sodium loaded filaments and 3D printing transdermal patches onto packaging material. Int J Pharm. 2020. https://doi.org/10.1016/j.ijpharm.2020.119588.

    Article  PubMed  Google Scholar 

  7. Im SH, Jung HT, Ho MJ, Lee JE, Kim HT, Kim DY, et al. Montelukast nanocrystals for transdermal delivery with improved chemical stability. Pharmaceutics. 2019. https://doi.org/10.3390/pharmaceutics12010018.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: Part I Oral bioavailability improvement. Eur J Pharm Biopharm. 2014. https://doi.org/10.1016/j.ejpb.2014.05.019.

    Article  PubMed  Google Scholar 

  9. Almajidi YQ, Mahdi ZH, Maraie NK. Preparation and in vitro evaluation of montelukast sodium oral nanoemulsion. Int J Appl Pharm. 2018. https://doi.org/10.22159/ijap.2018v10i5.28367.

  10. Ingrole RSJ, Azizoglu E, Dul M, Birchall JC, Gill HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials. 2021. https://doi.org/10.1016/j.biomaterials.2020.120491.

    Article  PubMed  Google Scholar 

  11. Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017. https://doi.org/10.1146/annurev-chembioeng-060816-101514.

    Article  PubMed  Google Scholar 

  12. Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, et al. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020. https://doi.org/10.1016/j.ijpharm.2020.119673.

  13. Nagarkar R, Singh M, Nguyen HX, Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J Drug Deliv Sci Technol. 2020. https://doi.org/10.1016/j.jddst.2020.101923.

    Article  Google Scholar 

  14. Sawatdee S, Nakpheng T, Wan Yi BT, Yu Shen BT, Nallamolu S, Srichana T. Formulation development and in-vitro evaluation of montelukast sodium pressurized metered dose inhaler. J Drug Deliv Sci Technol. 2020. https://doi.org/10.1016/j.jddst.2020.101534.

    Article  Google Scholar 

  15. Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008. https://doi.org/10.1016/j.biomaterials.2007.12.048.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release. 2016. https://doi.org/10.1016/j.jconrel.2015.11.019.

    Article  PubMed  Google Scholar 

  17. Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019. https://doi.org/10.1016/j.apsb.2019.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rouphael NG, Paine M, Mosley R, Henry S, McAllister D V, Kalluri H, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017.https://doi.org/10.1016/S0140-6736(17)30575-5.

  19. Fernando GJP, Hickling J, Jayashi Flores CM, Griffin P, Anderson CD, Skinner SR, et al. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (NanopatchTM). Vaccine. 2018. https://doi.org/10.1016/j.vaccine.2018.05.053.

    Article  PubMed  Google Scholar 

  20. Duarah S, Sharma M, Wen J. Recent advances in microneedle-based drug delivery: special emphasis on its use in paediatric population. Eur J Pharm Biopharm. 2019. https://doi.org/10.1016/j.ejpb.2019.01.005.

    Article  PubMed  Google Scholar 

  21. Mooney K, McElnay JC, Donnelly RF. Paediatricians’ opinions of microneedle-mediated monitoring: a key stage in the translation of microneedle technology from laboratory into clinical practice. Drug Deliv Transl Res. 2015. https://doi.org/10.1007/s13346-015-0223-5.

    Article  PubMed  Google Scholar 

  22. McCrudden MTC, Alkilani AZ, McCrudden CM, McAlister E, McCarthy HO, Woolfson a D, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release. 2014. https://doi.org/10.1016/j.jconrel.2014.02.007.

  23. Ripolin A, Quinn J, Larrañeta E, Vicente-Perez EM, Barry J, Donnelly RF. Successful application of large microneedle patches by human volunteers. Int J Pharm. 2017. https://doi.org/10.1016/j.ijpharm.2017.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kathuria H, Li H, Pan J, Lim SH, Kochhar JS, Wu C, et al. Large size microneedle patch to deliver lidocaine through skin. Pharm Res. 2016. https://doi.org/10.1007/s11095-016-1991-4.

    Article  PubMed  Google Scholar 

  25. Zhan H, Ma F, Huang Y, Zhang J, Jiang X, Qian Y. Application of composite dissolving microneedles with high drug loading ratio for rapid local anesthesia. Eur J Pharm Sci. 2018. https://doi.org/10.1016/j.ejps.2018.06.014.

    Article  PubMed  Google Scholar 

  26. Kim S, Yang H, Eum J, Ma Y, Fakhraei Lahiji S, Jung H. Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials. 2020. https://doi.org/10.1016/j.biomaterials.2019.119733.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim YC, Lee JW, Esser ES, Kalluri H, Joyce JC, Compans RW, et al. Fabrication of microneedle patches with lyophilized influenza vaccine suspended in organic solvent. Drug Deliv Transl Res. 2021. https://doi.org/10.1007/s13346-021-00927-4.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chu LY, Choi S-O, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010. https://doi.org/10.1002/jps.22140.

    Article  PubMed  Google Scholar 

  29. Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem. 2003. https://doi.org/10.1021/ac0346712.

    Article  PubMed  Google Scholar 

  30. Vekaria H, Limbasiya V, Patel P. Development and validation of RP-HPLC method for simultaneous estimation of montelukast sodium and fexofenadine hydrochloride in combined dosage form. J Pharm Res. 2013. https://doi.org/10.1016/j.jopr.2012.11.028.

    Article  Google Scholar 

  31. Lee I-C, He J-S, Tsai M-T, Lin K-C. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. J Mater Chem B. 2015. https://doi.org/10.1039/C4TB01555J.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim S, Eum J, Yang H, Jung H. Transdermal finasteride delivery via powder-carrying microneedles with a diffusion enhancer to treat androgenetic alopecia. J Control Release. 2019. https://doi.org/10.1016/j.jconrel.2019.11.002.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Park J-H, Choi S-O, Kamath R, Yoon Y-K, Allen MG, Prausnitz MR. Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices. 2007. https://doi.org/10.1007/s10544-006-9024-4.

    Article  PubMed  Google Scholar 

  34. De Santis F, Pantani R. Optical properties of polypropylene upon recycling. Sci World J. 2013. https://doi.org/10.1155/2013/354093.

    Article  Google Scholar 

  35. Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011. https://doi.org/10.1016/j.jconrel.2010.10.033.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li W, Tang J, Terry RN, Li S, Brunie A, Callahan RL, et al. Long-acting reversible contraception by effervescent microneedle patch. Sci Adv. 2019. https://doi.org/10.1126/sciadv.aaw8145.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng. 2019. https://doi.org/10.1038/s41551-018-0337-4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moga KA, Bickford LR, Geil RD, Dunn SS, Pandya AA, Wang Y, et al. Rapidly-dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach. Adv Mater. 2013. https://doi.org/10.1002/adma.201300526.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Taylor LS, Langkilde FW, Zografi G. Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers. J Pharm Sci. 2001. https://doi.org/10.1002/jps.1041.

    Article  PubMed  Google Scholar 

  40. Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014. https://doi.org/10.1016/j.ijpharm.2014.05.042.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Larrañeta E, Stewart S, Fallows SJ, Birkhäuer LL, McCrudden MTC, Woolfson AD, et al. A facile system to evaluate in vitro drug release from dissolving microneedle arrays. Int J Pharm. 2016. https://doi.org/10.1016/j.ijpharm.2015.11.038.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Richard Terry for technical advice related to hydrogels and Donna Bondy for administrative support.

Funding

This work was supported by The Scientific and Technological Research Council of Turkey-TÜBİTAK (2214-A—International Research Fellowship Programme for PhD Students).

Author information

Authors and Affiliations

Authors

Contributions

Erkan Azizoglu: conceptualization, methodology, validation, investigation, formal analysis, data curation, writing—original draft, visualization, funding acquisition. Ozgen Ozer: conceptualization, supervision. Mark R. Prausnitz: conceptualization, methodology, resources, writing—review and editing, supervision, project administration.

Corresponding author

Correspondence to Mark R. Prausnitz.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Mark R Prausnitz is an inventor of microneedle patents, is a paid advisor, and is a founder/shareholder of companies developing microneedle-based products (Micron Biomedical). This potential conflict of interest has been disclosed and is managed by Georgia Tech.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 895 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizoglu, E., Ozer, O. & Prausnitz, M.R. Fabrication of pure-drug microneedles for delivery of montelukast sodium. Drug Deliv. and Transl. Res. 12, 444–458 (2022). https://doi.org/10.1007/s13346-021-01047-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01047-9

Keywords

Navigation