Skip to main content

Advertisement

Log in

Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Biodegradable polymeric microneedle arrays (BPMNAs) could be explored as potential devices for transdermal drug delivery, which can provide a painless and safe drug delivery method. BPMNAs could also provide high drug-loading capacity and prolonged drug delivery once integrated with a drug reservoir. However, the fabrication of MNAs with a drug reservoir is expensive and requires complicated procedures. The present study was conducted to describe the preparation of a reservoir-based BPMNA containing estradiol valerate using polylactic acid (PLA) with the combination of FDM 3D printing and injection volume filling techniques. The tip size of the 3D printed needles decreased to 173 μm utilizing a chemical etching process. The content of estradiol valerate loaded in the 3D printed PLA MNAs was 29.79 ± 0.03 mg, and the release was in a prolonged manner for up to 7 days. The results of mechanical tests revealed that the force needed for the 3D printed PLA MNAs fracture (900 N) was significantly higher than that needed for their skin penetration (4 N). The successful penetration of 3D printed PLA MNAs through the stratum corneum was confirmed via penetration test, methylene blue staining, and histological examination. The results showed that 3D printed PLA MNAs can penetrate into the skin without reaching to the dermal nerves and puncture of blood vessels. In conclusion, in the current study, we explored the practicability of the preparation of drug loaded reservoir-based BPMNAs using the combination of FDM 3D printing and injection volume filling techniques for painless and prolonged transdermal drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

Consent.

References

  1. Gomez AM, Fuentes L, Allina A. Women or LARC First? Reproductive autonomy and the promotion of long-acting reversible contraceptive methods. Perspect Sex Reprod Health. 2014;46(3):171–5. https://doi.org/10.1363/46e1614.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mishell DR, El-Habashy MA, Good RG, Moyer DL. Contraception with an injectable progestin. A study of its use in postpartum women. American Journal of Obstetrics and Gynecology. 1968;101(8):1046–53. https://doi.org/10.1016/0002-9378(68)90346-3.

  3. Odom EB, Eisenberg DL, Fox IK. Difficult removal of subdermal contraceptive implants: a multidisciplinary approach involving a peripheral nerve expert. Contraception. 2017;96(2):89–95. https://doi.org/10.1016/j.contraception.2017.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Griffin JB, Ridgeway K, Montgomery E, Torjesen K, Clark R, Peterson J et al. Vaginal ring acceptability and related preferences among women in low- and middle-income countries: a systematic review and narrative synthesis. PLoS ONE. 2019;14(11). https://doi.org/10.1371/journal.pone.0224898.

  5. Riemma Pierre M, Rossetti F. Microneedle-based drug delivery systems for transdermal route. Curr Drug Targets. 2014;15(3):281–91. https://doi.org/10.2174/13894501113146660232.

    Article  CAS  Google Scholar 

  6. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Elsevier Masson SAS; 2019. p. 1249–58.

  7. Andersen TE, Andersen AJ, Petersen RS, Nielsen LH, Keller SS. Drug loaded biodegradable polymer microneedles fabricated by hot embossing. Microelectron Eng. 2018;195:57–61. https://doi.org/10.1016/j.mee.2018.03.024.

    Article  CAS  Google Scholar 

  8. Qiu Y, Li C, Zhang S, Yang G, He M, Gao Y. Systemic delivery of artemether by dissolving microneedles. Int J Pharm. 2016;508(1–2):1–9. https://doi.org/10.1016/j.ijpharm.2016.05.006.

    Article  CAS  PubMed  Google Scholar 

  9. Mc Crudden MTC, Larrañeta E, Clark A, Jarrahian C, Rein-Weston A, Lachau-Durand S, et al. Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J Control Release. 2018;292:119–29. https://doi.org/10.1016/j.jconrel.2018.11.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donnelly RF, Larrañeta E. Microarray patches: potentially useful delivery systems for long-acting nanosuspensions. Drug Discovery Today. 2018;23(5):1026–33. https://doi.org/10.1016/j.drudis.2017.10.013.

    Article  CAS  PubMed  Google Scholar 

  11. Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23(5):1008–19. https://doi.org/10.1007/s11095-006-0028-9.

    Article  CAS  PubMed  Google Scholar 

  12. Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011;149(3):242–9. https://doi.org/10.1016/j.jconrel.2010.10.033.

    Article  CAS  PubMed  Google Scholar 

  13. Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials. 2011;32(11):3134–40. https://doi.org/10.1016/j.biomaterials.2011.01.014.

    Article  CAS  PubMed  Google Scholar 

  14. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA. 2015;112(27):8260–5. https://doi.org/10.1073/pnas.1505405112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kochhar JS, Lim WXS, Zou S, Foo WY, Pan J, Kang L. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol Pharm. 2013;10(11):4272–80. https://doi.org/10.1021/mp400359w.

    Article  CAS  PubMed  Google Scholar 

  16. Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24. https://doi.org/10.1016/j.biomaterials.2007.12.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang QL, Zhu DD, Chen Y, Guo XD. A fabrication method of microneedle molds with controlled microstructures. Mater Sci Eng, C. 2016;65:135–42. https://doi.org/10.1016/j.msec.2016.03.097.

    Article  CAS  Google Scholar 

  18. Chen MC, Ling MH, Lai KY, Pramudityo E. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromol. 2012;13(12):4022–31. https://doi.org/10.1021/bm301293d.

    Article  CAS  Google Scholar 

  19. Raja WK, Maccorkle S, Diwan IM, Abdurrob A, Lu J, Omenetto FG, et al. Transdermal delivery devices: Fabrication, mechanics and drug release from silk. Small. 2013;9(21):3704–13. https://doi.org/10.1002/smll.201202075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57. https://doi.org/10.1007/s11095-010-0169-8.

    Article  CAS  PubMed  Google Scholar 

  21. Xie L, Zeng H, Sun J, Qian W. Engineering microneedles for therapy and diagnosis: A survey. MDPI AG; 2020.

  22. Zhou J, Ochoa M, Samaddar S, Rahimi R, Badwaik VD, Thompson DH et al., editors. A rapid micro-molding process for fabricating polymeric biodegradable 3D structures using hydrophobic elastomeric molds 2017/02//: Institute of Electrical and Electronics Engineers Inc.

  23. Kim J, Yoon YK, Allen MG. Computer numerical control (CNC) lithography: Light-motion synchronized UV-LED lithography for 3D microfabrication. Journal of Micromechanics and Microengineering. 2016;26(3). https://doi.org/10.1088/0960-1317/26/3/035003.

  24. McGrath MG, Vucen S, Vrdoljak A, Kelly A, O’Mahony C, Crean AM, et al. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014;86(2):200–11. https://doi.org/10.1016/j.ejpb.2013.04.023.

    Article  CAS  PubMed  Google Scholar 

  25. Lee K, Jung H. Drawing lithography for microneedles: A review of fundamentals and biomedical applications. Biomaterials; 2012. p. 7309–26.

  26. Vecchione R, Coppola S, Esposito E, Casale C, Vespini V, Grilli S, et al. Electro-drawn drug-loaded biodegradable polymer microneedles as a viable route to hypodermic injection. Adv Func Mater. 2014;24(23):3515–23. https://doi.org/10.1002/adfm.201303679.

    Article  CAS  Google Scholar 

  27. Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 2018;18(8):1223–30. https://doi.org/10.1039/c8lc00098k.

    Article  CAS  PubMed  Google Scholar 

  28. Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–84. https://doi.org/10.1021/acs.molpharmaceut.5b00510.

    Article  CAS  PubMed  Google Scholar 

  29. Keikhosravi N, Mirdamadian SZ, Varshosaz J, Taheri A. Preparation and characterization of polypills containing aspirin and simvastatin using 3D printing technology for the prevention of cardiovascular diseases. Drug Dev Ind Pharm. 2020;46(10):1665–75. https://doi.org/10.1080/03639045.2020.1820034.

    Article  CAS  PubMed  Google Scholar 

  30. Linares V, Casas M, Caraballo I. Printfills: 3D printed systems combining fused deposition modeling and injection volume filling. Application to colon-specific drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2019;134:138–43. https://doi.org/10.1016/j.ejpb.2018.11.021.

  31. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63. https://doi.org/10.1016/j.ijpharm.2015.04.069.

    Article  CAS  PubMed  Google Scholar 

  32. Homaee Borujeni S, Mirdamadian SZ, Varshosaz J, Taheri A. Three-dimensional (3D) printed tablets using ethyl cellulose and hydroxypropyl cellulose to achieve zero order sustained release profile. Cellulose. 2020;27(3):1573–89. https://doi.org/10.1007/s10570-019-02881-4.

    Article  CAS  Google Scholar 

  33. Lutton REM, Moore J, Larrañeta E, Ligett S, Woolfson AD, Donnelly RF. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res. 2015;5(4):313–31. https://doi.org/10.1007/s13346-015-0237-z.

    Article  PubMed  Google Scholar 

  34. Zhan H, Ma F, Huang Y, Zhang J, Jiang X, Qian Y. Application of composite dissolving microneedles with high drug loading ratio for rapid local anesthesia. Eur J Pharm Sci. 2018;121:330–7. https://doi.org/10.1016/j.ejps.2018.06.014.

    Article  CAS  PubMed  Google Scholar 

  35. Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472:65–73. https://doi.org/10.1016/j.ijpharm.2014.05.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ryan E, Garland MJ, Singh TRR, Bambury E, O’Dea J, Migalska K, et al. Microneedle-mediated transdermal bacteriophage delivery. Eur J Pharm Sci. 2012;47:297–304. https://doi.org/10.1016/j.ejps.2012.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan S, Minhas MU, Tekko IA, Donnelly RF, Thakur RRS. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Deliv Transl Res. 2019;9:764–82. https://doi.org/10.1007/s13346-019-00617-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larrañeta E, Stewart S, Fallows SJ, Birkhäuer LL, McCrudden MTC, Woolfson AD, et al. A facile system to evaluate in vitro drug release from dissolving microneedle arrays. Int J Pharm. 2016;497:62–9. https://doi.org/10.1016/j.ijpharm.2015.11.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen J, Huang W, Huang Z, Liu S, Ye Y, Li Q, et al. Fabrication of Tip-Dissolving Microneedles for Transdermal Drug Delivery of Meloxicam. AAPS PharmSciTech. 2018;19:1141–51. https://doi.org/10.1208/s12249-017-0926-7.

    Article  CAS  PubMed  Google Scholar 

  40. Khoee S, Hossainzadeh MT. Effect of O/S/W process parameters on 17β-EV loaded nanoparticles properties. Colloids Surf, B. 2010;75(1):133–40. https://doi.org/10.1016/j.colsurfb.2009.08.021.

    Article  CAS  Google Scholar 

  41. O'Mahony C, Bocchino A, Haslinger MJ, Brandstatter S, Außerhuber H, Schossleitner K et al. Piezoelectric inkjet coating of injection moulded, reservoir-tipped microneedle arrays for transdermal delivery. Journal of Micromechanics and Microengineering. 2019;29(8). https://doi.org/10.1088/1361-6439/ab222b.

  42. Cicinelli E, Savino F, Cagnazzo I, Scorcia P, Galantino P. Progesterone administration by nasal spray in menopausal women: Comparison between two different spray formulations. Gynecol Endocrinol. 1992;6(4):247–51. https://doi.org/10.3109/09513599209024986.

    Article  CAS  PubMed  Google Scholar 

  43. Baloš S, Pili B, Petronijevi B, Markovi D, Mirkovi S, Šarev I. Improving mechanical properties of flowable dental composite resin by adding silica nanoparticles Poboljšanje mehanikih svojstava tenog kompozita dodavanjem nanoestica silicijum-dioksida. Vojnosanit Pregl. 2013;70(5):477–83. https://doi.org/10.2298/VSP1305477B.

    Article  PubMed  Google Scholar 

  44. Su B, Zhou Y-G, Wu H-H. Influence of mechanical properties of polypropylene/low-density polyethylene nanocomposites. Nanomaterials and Nanotechnology. 2017;7:184798041771592-. https://doi.org/10.1177/1847980417715929.

  45. Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep. 2018;8(1):1–1. https://doi.org/10.1038/s41598-018-19463-2.

    Article  CAS  Google Scholar 

  46. Machekposhti S, Soltani M, Najafizadeh P, Ebrahimi SA, Chen P. Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid. J Control Release. 2017;261:87–92. https://doi.org/10.1016/j.jconrel.2017.06.016.

    Article  CAS  Google Scholar 

  47. Park JH, Prausnitz MR. Analysis of the mechanical failure of polymer microneedles by axial force. J Korean Phys Soc. 2010;56:1223–7. https://doi.org/10.3938/jkps.56.1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arafat B, Wojsz M, Isreb A, Forbes RT, Isreb M, Ahmed W, et al. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci. 2018;118:191–9. https://doi.org/10.1016/j.ejps.2018.03.019.

    Article  CAS  PubMed  Google Scholar 

  49. Tan DK, Maniruzzaman M, Nokhodchi A. development and optimisation of novel polymeric compositions for sustained release theophylline caplets (PrintCap) via FDM 3D printing. Polymers. 2019;12(1):27-. https://doi.org/10.3390/polym12010027.

  50. Joshi BV, Patil VB, Pokharkar VB. Compatibility studies between carbamazepine and tablet excipients using thermal and non-thermal methods. Drug Dev Ind Pharm. 2002;28(6):687–94. https://doi.org/10.1081/DDC-120003860.

    Article  CAS  PubMed  Google Scholar 

  51. Botha SA, Lötter AP. Compatibility study between naproxen and tablet excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1990;16(4):673–83. https://doi.org/10.3109/03639049009104410.

    Article  CAS  Google Scholar 

  52. Pineda-Hernández MT, Pérez-Urizar JT, Ganem-Rondero A. Thermo-reversible in situ forming implant with nanostructured lipid carriers (NLC) as a delivery system for the administration of estradiol valerate. Drug Deliv Transl Res. 2020;10(5):1393–402. https://doi.org/10.1007/s13346-019-00704-4.

    Article  CAS  PubMed  Google Scholar 

  53. Yang TC, Yeh CH. Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using Fused Deposition Modeling (FDM): The effects of printing speed. Polymers. 2020;12(6):1334-. https://doi.org/10.3390/POLYM12061334.

  54. Spinelli G, Kotsilkova R, Ivanov E, Petrova-Doycheva I, Menseidov D, Georgiev V et al. Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly(lactic) acid composites filled with carbon nanotubes and graphene. Nanomaterials. 2019;10(1):35-. https://doi.org/10.3390/nano10010035.

  55. Kim H, Lee S. Characterization of electrical heating of graphene/PLA honeycomb structure composite manufactured by CFDM 3D printer. Fashion and Textiles. 2020;7(1). https://doi.org/10.1186/s40691-020-0204-2.

  56. Akhayere E, Kavaz D, Vaseashta A. Synthesizing nano silica nanoparticles from barley grain waste: Effect of temperature on mechanical properties. Polish Journal of Environmental Studies. 2019;28(4):2513–21. https://doi.org/10.15244/pjoes/91078.

  57. Cavallari C, Fini A, Ceschel G. Design of olanzapine/lutrol solid dispersions of improved stability and performances. Pharmaceutics. 2013;5(4):570–90. https://doi.org/10.3390/pharmaceutics5040570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pop MA, Croitoru C, Bedő T, Geamăn V, Radomir I, Cosnită M, et al. Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. J Appl Polym Sci. 2019;136(17):47382. https://doi.org/10.1002/app.47382.

    Article  CAS  Google Scholar 

  59. Venkataram S, Khohlokwane M, Wallis SH. Differential scanning calorimetry as a quick scanning technique for solid state stability studies. Drug Dev Ind Pharm. 1995;21(7):847–55. https://doi.org/10.3109/03639049509026649.

    Article  CAS  Google Scholar 

  60. Rao M, Ranpise A, Borate S, Thanki K. Mechanistic evaluation of the effect of sintering on Compritol® 888 ATO matrices. AAPS PharmSciTech. 2009;10(2):355–60. https://doi.org/10.1208/s12249-009-9211-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104:51–66. https://doi.org/10.1016/j.jconrel.2005.02.002.

    Article  CAS  PubMed  Google Scholar 

  62. Park JH, Yoon YK, Choi SO, Prausnitz MR, Allen MG. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Biomed Eng. 2007;54:903–13. https://doi.org/10.1109/TBME.2006.889173.

    Article  PubMed  Google Scholar 

  63. Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37:1155–63. https://doi.org/10.1016/j.jbiomech.2003.12.010.

    Article  PubMed  Google Scholar 

  64. Moronkeji K, Todd S, Dawidowska I, Barrett SD, Akhtar R. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin. J Control Release. 2017;265:102–12. https://doi.org/10.1016/j.jconrel.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  65. Neupane R, Boddu SHS, Renukuntla J, Babu RJ, Tiwari AK. Alternatives to biological skin in permeation studies: Current trends and possibilities. Pharmaceutics. 2020;12(2):152. https://doi.org/10.3390/pharmaceutics12020152.

    Article  CAS  PubMed Central  Google Scholar 

  66. Bravo D, Rigley TH, Gibran N, Strong DM, Newman-Gage H. Effect of storage and preservation methods on viability in transplantable human skin allografts. Burns. 2000;26:367–78. https://doi.org/10.1016/S0305-4179(99)00169-2.

    Article  CAS  PubMed  Google Scholar 

  67. Yavuz B, Chambre L, Harrington K, Kluge J, Valenti L, Kaplan DL. Silk fibroin microneedle patches for the sustained release of levonorgestrel. ACS Appl Bio Mater. 2020;3:5375–82. https://doi.org/10.1021/acsabm.0c00671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042.

    Article  CAS  PubMed  Google Scholar 

  69. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev. 2016;107:367–92. https://doi.org/10.1016/j.addr.2016.06.012.

    Article  CAS  PubMed  Google Scholar 

  70. Weir NA, Buchanan FJ, Orr JF, Dickson GR. Degradation of poly-L-lactide. Part 1: In vitro and in vivo physiological temperature degradation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2004;218:307–19. https://doi.org/10.1243/0954411041932782.

  71. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–44. https://doi.org/10.1517/17425241003602259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuan Y, Choi K, Choi SO, Kim J. Early stage release control of an anticancer drug by drug-polymer miscibility in a hydrophobic fiber-based drug delivery system. RSC Adv. 2018;8:19791–803. https://doi.org/10.1039/c8ra01467a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh M, Jonnalagadda S. Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications. J Mater Sci - Mater Med. 2021;32:44. https://doi.org/10.1007/s10856-021-06509-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dinarvand R, Moghadam SH, Sayar P, Alaee M, Atyabi F. Preparation of a polymeric reservoir naltrexone delivery device: effect of PEG content of the PLA membrane on drug release. Therapy. 2005;2:407–13. https://doi.org/10.2217/14750708.2.3.407.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant (No. 198107) from Isfahan University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azade Taheri.

Ethics declarations

Ethics approval

The animal study was approved by the Medical Ethics Committee at the Isfahan University of Medical Sciences (Ethics code: IR.MUI.RESEARCH.REC.1398.358).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosraviboroujeni, A., Mirdamadian, S.Z., Minaiyan, M. et al. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv. and Transl. Res. 12, 1195–1208 (2022). https://doi.org/10.1007/s13346-021-01006-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01006-4

Keywords

Navigation