Skip to main content

Advertisement

Log in

A chitosan-based nanosystem as pneumococcal vaccine delivery platform

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Chitosan-based nanosystems have been described as interesting tools for antigen delivery and for enhancing the immunogenicity of nasally administered vaccines. As a possible vaccine delivery method, the chemical conjugation of chitosan nanocapsules with the Streptococcus pneumoniae cell membrane protein PsaA (pneumococcal surface adhesin A) is suggested here. The antigen PsaA, common to all pneumococcus serotypes, is expected to improve its uptake by immune cells and to activate specific T cells, generating an adaptive immune response against pneumococcus. With this aim, chitosan nanocapsules with thiol-maleimide conjugation between the polymer (chitosan) and the antigen (PsaA) were designed to enable the surface presentation of PsaA for immune cell recognition. Spherical-shaped particles, with a size of 266 ± 32 nm, positive charge of +30 ± 1 mV, and good stability profiles in simulated nasal fluids (up to 24 h) were achieved. PsaA association rates were three times higher compared with nanocapsules without covalent polymer-protein conjugation. Cytotoxicity studies in cell culture media showed non-toxic effect under 150 µg/mL concentration of nanocapsules, and subsequent studies on the maturation of immature dendritic cells in the presence of antigen-conjugated nanocapsules displayed peripheral blood mononuclear cell activation and lymphocyte differentiation after their presentation by dendritic cells. Secretion of TNFα following exposure to nanocapsules and the ability of nanocapsules to activate CD4 and CD8 T lymphocytes had also been studied.

Graphical abstract

Antigen loaded nanocarrier uptake and presentation by professional presenting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pérez-Dorado I, Galan-Bartual S, Hermoso JA. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Mol Oral Microbiol. 2012;27:221–45.

    Article  PubMed  Google Scholar 

  2. Singh R, Gupta P, Sharma PK, Ades EW, Hollingshead SK, Singh S, et al. Prediction and characterization of helper T-cell epitopes from pneumococcal surface adhesin A. Immunology. 2014;141:514–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohammadzadeh M, Mamishi S, Pourakbari B, Mahmoudi S. Recent approaches in whole cell pneumococcal vaccine development: a review study. Iran J Microbiol. 2017;9:381–8.

    Article  CAS  PubMed  Google Scholar 

  4. Leites A, Paula A, Argondizzo C, Esteves S, Jessouron E, Galler R, et al. Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesin A) expression in Escherichia coli and recombinant protein stability during long-term storage. Protein Expr Purif. 2011;78:38–47.

    Article  Google Scholar 

  5. Bartual SG, Alcorlo M, Martínez-Caballero S, Molina R, Hermoso JA. Three-dimensional structures of Lipoproteins from Streptococcus pneumoniae and Staphylococcus aureus. Int J Med Microbiol. 2017;1–13.

  6. Rajam G, Anderton JM, Carlone GM, Sampson JS, Ades EW. Pneumococcal surface adhesin A (PsaA): a review. Crit Rev Microbiol. 2008;34:163–73.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum Vaccines Immunother. 2018;14:1717–33.

    Article  Google Scholar 

  8. Almeida AJ, Florindo HF. Chapter 3.1. Nanocarriers Overcoming the Nasal Barriers: Physiological Considerations and Mechanistic Issues. 2012;117–32.

  9. Calvo P, Remuñan-López C, Vila-Jato JL AM. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997;1431–1436

  10. Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev. 2009;61:140–57.

    Article  CAS  PubMed  Google Scholar 

  11. Illum L. Nasal drug delivery - possibilities, problems and solutions. J Control Release. 2003;87:187–98.

    Article  CAS  PubMed  Google Scholar 

  12. Slütter B, Hagenaars N, Jiskoot W. Rational design of nasal vaccines. J Drug Target. 2008;16:1–17.

    Article  PubMed  Google Scholar 

  13. Lewis KL, Reizis B. Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb Perspect Biol. 2012;4:007401.

    Article  Google Scholar 

  14. Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol. 2014;65:125–202.

    Article  CAS  PubMed  Google Scholar 

  15. Prego C, Torres D, Alonso MJ. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv. 2005;2:843–54.

    Article  CAS  PubMed  Google Scholar 

  16. Prego C, Torres D, Alonso MJ. Chitosan nanocapsules: a new carrier for nasal peptide delivery. J Drug Deliv Sci Technol. 2006;16:331–7.

    Article  CAS  Google Scholar 

  17. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62:3–11.

    Article  CAS  PubMed  Google Scholar 

  18. Shi GN, Zhang CN, Xu R, Niu JF, Song HJ, Zhang XY, et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 113:191–202.

  19. Prasanna M, Soulard D, Camberlein E, Ruffier N, Lambert A, Trottein F, et al. Semisynthetic glycoconjugate based on dual role protein/PsaA as a pneumococcal vaccine. Eur J Pharm Sci. 2019;129:31–41.

    Article  CAS  PubMed  Google Scholar 

  20. Grenha A. Chitosan nanoparticles: a survey of preparation methods. J Drug Target. 2012;20:291–300.

    Article  CAS  Google Scholar 

  21. González-Aramundiz JV, Presas E, Dalmau-Mena I, Martínez-Pulgarín S, Alonso C, Escribano JM, et al. Rational design of protamine nanocapsules as antigen delivery carriers. J Control Release. 2017;245:62–9.

    Article  PubMed  Google Scholar 

  22. Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3:409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Posch W, Lass-Flörl C, Wilflingseder D. Generation of human monocyte-derived dendritic cells from whole blood. J Vis Exp. 2016;2016:2–7.

    Google Scholar 

  24. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  PubMed  Google Scholar 

  25. Kowalewicz-Kulbat M, Ograczyk E, Krawczyk K, Rudnicka W, Fol M. Type of monocyte immunomagnetic separation affects the morphology of monocyte-derived dendritic cells, as investigated by scanning electron microscopy. J Immunol Methods. 2016;439:79–82.

    Article  CAS  PubMed  Google Scholar 

  26. Hu X, Zheng W, Wang L, Wan N, Wang B, Li W, et al. The detailed analysis of the changes of murine dendritic cells (DCs) induced by thymic peptide: pidotimod (PTD). Hum Vaccines Immunother. 2012;8:1250–8.

    Article  CAS  Google Scholar 

  27. Lecoeur H, De Oliveira-Pinto LM, Gougeon ML. Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-aminoactinomycin D assay. J Immunol Methods. 2002;265:81–96.

    Article  CAS  PubMed  Google Scholar 

  28. Moffitt K, Malley R. Rationale and prospects for novel pneumococcal vaccines. Hum Vaccines Immunother. 2016;12:383–92.

    Article  Google Scholar 

  29. Tai SS. Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies. Crit Rev Microbiol. 2006;32:139–53.

    Article  CAS  PubMed  Google Scholar 

  30. Whaley MJ, Sampson JS, Johnson SE, Rajam G, Stinson-Parks A, Holder P, et al. Concomitant administration of recombinant PsaA and PCV7 reduces Streptococcus pneumoniae serotype 19A colonization in a murine model. Vaccine. 2010;28:3071–5.

    Article  CAS  PubMed  Google Scholar 

  31. Derksen JTP, Scherphof GL. An improved method for the covalent coupling of proteins to liposomes. BBA Biomembranes. 1985;814:151–5.

    Article  CAS  Google Scholar 

  32. Scaria PV, Chen B, Rowe CG, Jones DS, Barnafo E, Fischer ER, et al. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity. PLoS One. 2017;12:1–19.

    Article  Google Scholar 

  33. Couñago RM, Ween MP, Begg SL, Bajaj M, Zuegg J, O’Mara ML, et al. Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat Chem Biol. 2014;10:35–41.

    Article  PubMed  Google Scholar 

  34. Sahoo D, Sahoo S, Mohanty P, Sasmal S, Nayak PL. Chitosan: a new versatile bio-polymer for various applications. Des Monomers Polym. 2009;12:377–404.

    Article  CAS  Google Scholar 

  35. Matsumoto M, Udomsinprasert W, Laengee P, Honsawek S, Patarakul K, Chirachanchai S. A water-based chitosan-maleimide precursor for bioconjugation: an example of a rapid pathway for an in situ injectable adhesive gel. Macromol Rapid Commun. 2016;37:1618–22.

    Article  CAS  PubMed  Google Scholar 

  36. Martínez-Jothar L, Doulkeridou S, Schiffelers RM, Sastre Torano J, Oliveira S, van Nostrum CF, et al. Insights into maleimide-thiol conjugation chemistry: conditions for efficient surface functionalization of nanoparticles for receptor targeting. J Control Release. 2018;282:101–9.

    Article  PubMed  Google Scholar 

  37. Malhotra M, Tomaro-Duchesneau C, Saha S, Kahouli I, Prakash S. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomedicine. 2013;8:2041–52.

    PubMed  PubMed Central  Google Scholar 

  38. Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, et al. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs. 2010;8:1567–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Esquivel R, Juárez J, Almada M, Ibarra J, Valdez MA. Synthesis and characterization of new thiolated chitosan nanoparticles obtained by ionic gelation method. Int J Polym Sci. 2015;2015:1–18.

    Article  Google Scholar 

  40. Goulart C, Rodriguez D, Kanno AI, Silva JLSC, Leite LCC. Early pneumococcal clearance in mice induced by systemic immunization with recombinant BCG PspA-PdT prime and protein boost correlates with cellular and humoral immune response in bronchoalveolar fluids (BALF). Vaccine X; 2020;4:100049.

  41. Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother. 2004;58:168–72.

    Article  PubMed  Google Scholar 

  42. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.

    Article  CAS  PubMed  Google Scholar 

  43. Goycoolea FM, Valle-Gallego A, Stefani R, Menchicchi B, David L, Rochas C, et al. Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation. Colloid Polym Sci. 2012;290:1423–34.

    Article  CAS  Google Scholar 

  44. Calvo P, Alonso MJ, Sur C. Development of positively charged colloidal drug carriers: chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid Polym Sci. 1997;275:46–53.

    Article  CAS  Google Scholar 

  45. Gradauer K, Vonach C, Leitinger G, Kolb D, Fröhlich E, Roblegg E, et al. Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties. Int J Nanomedicine. 2012;7:2523–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, et al. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep. 2016;6:19768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shrestha S, Wang B, Dutta P. Nanoparticle processing: understanding and controlling aggregation. Adv Colloid Interface Sci. 2020;279:102–62.

    Article  Google Scholar 

  48. González-Aramundiz JV, Peleteiro M, González-Fernández Á, Alonso MJ, Csaba NS. Protamine nanocapsules for the development of thermostable adjuvanted nanovaccines. Mol Pharm. 2018;15:5653–64.

    Article  PubMed  Google Scholar 

  49. Tuoriniemi J, Johnsson ACJH, Holmberg JP, Gustafsson S, Gallego-Urrea JA, Olsson E, et al. Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. Sci Technol Adv Mater. 2014;15.

  50. Menchicchi B, Fuenzalida JP, Bobbili KB, Hensel A, Swamy MJ, Goycoolea FM. Structure of chitosan determines its interactions with mucin. Biomacromol. 2014;15:3550–8.

    Article  CAS  Google Scholar 

  51. Collado-González M, Espinosa YG, Goycoolea FM. Interaction between chitosan and mucin: fundamentals and applications. Biomimetics. 2019;4:1–20.

    Article  Google Scholar 

  52. He F, Becker GW, Litowski JR, Narhi LO, Brems DN, Razinkov VI. High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Anal Biochem. 2010;399:141–3.

    Article  CAS  PubMed  Google Scholar 

  53. Raskin MM, Schlachet I, Sosnik A. Mucoadhesive nanogels by ionotropic crosslinking of chitosan-g-oligo(NiPAam) polymeric micelles as novel drug nanocarriers. Nanomedicine. 2016;11:217–33.

    Article  CAS  PubMed  Google Scholar 

  54. Szymańska E, Winnicka K. Stability of chitosan - a challenge for pharmaceutical and biomedical applications. Mar Drugs. 2015;13:1819–46.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tonglairoum P, Brannigan RP, Opanasopit P, Khutoryanskiy VV. Maleimide-bearing nanogels as novel mucoadhesive materials for drug delivery. J Mater Chem B. 2016;4:6581–7.

    Article  CAS  PubMed  Google Scholar 

  56. Kaldybekov DB, Tonglairoum P, Opanasopit P, Khutoryanskiy VV. Mucoadhesive maleimide-functionalised liposomes for drug delivery to urinary bladder. Eur J Pharm Sci. 2018;111:83–90.

    Article  CAS  PubMed  Google Scholar 

  57. Tzankova V, Gorinova C, Kondeva-Burdina M, Simeonova R, Philipov S, Konstantinov S, et al. In vitro and in vivo toxicity evaluation of cationic PDMAEMA-PCL-PDMAEMA micelles as a carrier of curcumin. Food Chem Toxicol. 2016;97:1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Mellman I, Steinman RM. Minireview Dendritic Cells: Specialized and Regulated Antigen Processing Machines cells are adept at endocytosis and express relatively low levels of surface MHC class I and II products and costimu-latory molecules (e.g., CD86). Abundant MHC class II mol. Cell. 2001;106:255–8.

  59. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  60. Al-Ashmawy GMZ. Dendritic Cell Subsets, Maturation and Function. Dendritic Cells. InTech; 2018.

    Google Scholar 

  61. Braun D, Longman RS, Albert ML. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood. 2005;106:2375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–77.

    Article  CAS  PubMed  Google Scholar 

  63. Caulfield MJ. Endotoxin-induced T lymphocyte S N Vogel, M L Hilfiker and M J Caulfield. J Immunol. 1983;130:1774–9.

    PubMed  Google Scholar 

  64. Craig A, Mai J, Cai S, Jeyaseelan S. Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun. 2009;77:568–75.

    Article  CAS  PubMed  Google Scholar 

  65. Dzopalic T, Rajkovic I, Dragicevic A, Colic M. The response of human dendritic cells to co-ligation of pattern-recognition receptors. Immunol Res. 2012;52:20–33.

    Article  CAS  PubMed  Google Scholar 

  66. Peleteiro M, Presas E, González-Aramundiz JV, Sánchez-Correa B, Simón-Vázquez R, Csaba N, et al. Polymeric nanocapsules for vaccine delivery: Influence of the polymeric shell on the interaction with the immune system. Front Immunol. 2018;9.

Download references

Funding

This work was supported by ‘Ministerio de Economía y Competitividad’ (RETOS-SAF2016-79230-R-ERC2018-092841 and PID2019-108727RB-I00). Sandra Robla received financial support from the Xunta de Galicia (Centro Singular de Investigación de Galicia accreditation 2019–2022) and the European Union (European Regional Development Fund-ERDF), code ED431G 2019/02. Maruthi Prasanna received his doctoral fellowship from the European Commission, Education, Audiovisual and Culture Executive Agency (EACEA), under the Erasmus Mundus program, “NanoFar: European Doctorate in Nanomedicine and Pharmaceutical Innovation” (Project: 2015-01-C4). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Contributions

Sandra Robla was in charge of the overall experimental execution, data analysis, writing, and figure preparation. Maruthi Prasanna contributed to the experimental execution and writing. Cyrille Grandjean was involved in the synthesis and characterization of the PsaA antigen, reviewing and editing the manuscript. R Varela-Calviño was involved in the design and supervision of the in vitro cell experiments, reviewing and editing the manuscript. Noemi Csaba was involved in writing, reviewing, editing, supervision, project design, and administration.

Corresponding author

Correspondence to Noemi Csaba.

Ethics declarations

Ethics approval

All procedures followed were in accordance with the ethical standards of the responsible institutional and national committees on human experimentation and with the Declaration of Helsinki. Informed consent was obtained from all patients for being included in the study.

Consent to participate

All institutional and national guidelines for the obtention and use of human blood were followed. Blood was drawn with the informed consent of all subjects and appropriate permission was obtained from the Institutional Ethics Committee (Comité Ético de Investigación Clínica de Galicia, CEIC). No animal or human studies were carried out by the authors for this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 556 KB)

Supplementary file2 (TIF 96 KB)

Supplementary file3 (TIF 58 KB)

Supplementary file4 (MP4 428 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robla, S., Prasanna, M., Varela-Calviño, R. et al. A chitosan-based nanosystem as pneumococcal vaccine delivery platform. Drug Deliv. and Transl. Res. 11, 581–597 (2021). https://doi.org/10.1007/s13346-021-00928-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00928-3

Keywords

Navigation