Skip to main content

Advertisement

Log in

Physicochemical characterization and in vitro biological evaluation of solid compounds from furazolidone-based cyclodextrins for use as leishmanicidal agents

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The discovery of new drugs and dosage forms for the treatment of neglected tropical diseases, such as human and animal leishmaniasis, is gaining interest in the chemical, biological, pharmaceutical, and medical fields. Many pharmaceutical companies are exploring the use of old drugs to establishing new drug dosage forms and drug delivery systems, in particular for use in neglected diseases. The formation of complexes with cyclodextrins is widely used to improve the stability, solubility, and bioavailability of pharmaceutical drugs, as well as reduce both the toxicity and side effects of many of these drugs. The aim of this study was to characterize solid compounds obtained from the association between furazolidone (FZD) and β-cyclodextrin (β-CD) or hydroxypropyl-β-cyclodextrin (HP-β-CD). The solid compounds were prepared in molar ratios of 1:1 and 1:2 (drug:CD) by kneading and lyophilization. Molecular docking was used to predict the preferred relative orientation of FZD when bound in both studied cyclodextrins. The resulting solid compounds were qualitatively characterized by scanning electron microscopy (SEM), thermal analysis (DSC and TG/DTG), X-ray diffraction (XRD), Raman spectroscopy with image mapping (Raman mapping), and 13C nuclear magnetic resonance spectroscopy (13C NMR) in the solid state. The cytotoxicity of the compounds against THP-1 macrophages and the 50% growth inhibition (IC50) against Leishmania amazonensis promastigote forms were subsequently investigated using in vitro techniques. For all of the solid compounds obtained, the existence of an association between FZD and CD were confirmed by one or more characterization techniques (TG/DTG, DSC, SEM, XRD, RAMAN, and 13C NMR), particularly by a significant decrease in the crystallinity of these materials and a reduction in the melting enthalpy associated with furazolidone thermal events. The formation of more effective interactions occurred in the compounds prepared by lyophilization, in a 1:2 molar ratio of the two CDs studied. However, the formation of an inclusion complex was confirmed only for the solid compound obtained from HP-β-CD prepared by lyophilization (LHFZD1:2). The absence of cytotoxicity on the THP-1 macrophage lineages and the leishmanicidal activity were confirmed for all compounds. MHFZD1:2 and LHFZD1:2 were found to be very active against promastigote forms of L. amazonensis, while all others were considered only active. These results are in line with the literature, demonstrating the existence of biological activity for associations between drugs and CDs in the form of complexes and non-complexes. All solid compounds obtained were found to be promising for use as leishmanicidal agents against promastigote forms of L. amazonensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barratt MJ, Frail DE. Drug repositioning: bringing new life to shelved assets and existing drugs: Wiley; 2012.

  2. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004. https://doi.org/10.1038/nrd1468.

  3. Chong CR, Sullivan DJ. New uses for old drugs. Nature. 2007;448:645–6.

    Article  CAS  PubMed  Google Scholar 

  4. Padhy BM, Gupta YK. Drug repositioning: re-investigating existing drugs for new therapeutic indications. Postgrad Med J. 2011. https://doi.org/10.4103/0022-3859.81870.

  5. Braga SS. Treating an old disease with new tricks: strategies based on host–guest chemistry for leishmaniasis therapy. J Incl Phenom Macrocycl Chem. 2019. https://doi.org/10.1007/s10847-019-00885-y.

  6. Martins VHG, Rodrigues MR, Mascarenhas LD, De Azambuja CRL, Londoño JL, De Lima VR. The effect of furazolidone on the physico-chemical properties of dimyristoylphosphatidylcholine bilayers: Relevance to anti-leishmanial therapy. J Mol Struct 2014; https://doi.org/10.1016/j.molstruc.2013.12.004

  7. Passos SR, Rodrigues TDA, Madureira AP, Giunchetti RC, Zanini MS. Clinical treatment of cutaneous leishmaniasis in dogs with furazolidone and domperidone. Int J Antimicrob Agents. 2014. https://doi.org/10.1016/j.ijantimicag.2014.07.011.

  8. Dantas-torres F. Canine vector-borne diseases in Brazil. Parasit Vectors. 2008. https://doi.org/10.1186/1756-3305-1-25.

  9. Madeira MF, Schubach A, Schubach TMP, Pacheco RS, Oliveira FS, Pereira SA, et al. Mixed infection with Leishmania (Viannia) braziliensis and Leishmania (Leishmania) chagasi in a naturally infected dog from Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg. 2013. https://doi.org/10.1016/j.trstmh.2005.07.011.

  10. Singh OP, Singh B, Chakravarty J, Sundar S. Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infect Dis Poverty. Infectious Diseases of Poverty. 2016; https://doi.org/10.1186/s40249-016-0112-2

  11. Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty. Trends Parasitol. 2006. https://doi.org/10.1016/j.pt.2006.09.004.

  12. Pink R, Hudson A, Mouriès M, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4:727–40.

    Article  CAS  PubMed  Google Scholar 

  13. Torres-guerrero E, Quintanilla-cedillo MR, Ruiz-esmenjaud J, Arenas R. Leishmaniasis : a review [version 1; referees: 2 approved]. F1000Research. 2017. https://doi.org/10.12688/f1000research.11120.1.

  14. Jiang X, Sun L, Qiu JJ, Sun X, Li S, Wang X, et al. A Novel application of furazolidone: anti-leukemic activity in acute myeloid leukemia. PLoS One. 2013. https://doi.org/10.1371/journal.pone.0072335.

  15. Karamanakos PN. Possible role for furazolidone in the treatment of glioblastoma multiforme. J BUON. 2013;18:1097.

    PubMed  Google Scholar 

  16. Alam MI, Paget T, Elkordy AA. Formulation and advantages of furazolidone in liposomal drug delivery systems. Eur J Pharm Sci. 2016. https://doi.org/10.1016/j.ejps.2016.01.017.

  17. Demicheli C, Ochoa R, Da Silva JBB, Falcão CAB, Rossi-Bergmann B, De Melo AL, et al. Oral delivery of meglumine antimoniate-β-cyclodextrin complex for treatment of leishmaniasis. Antimicrob Agents Chemother. 2004. https://doi.org/10.1128/AAC.48.1.100-103.2004.

  18. Rodgers J, Jones A, Gibaud S, Bradley B, Mccabe C, Barrett MP, et al. Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis. 2011. https://doi.org/10.1371/journal.pntd.0001308.

  19. Lyra MAM, Soares-Sobrinho JL, Figueiredo RCBQ, Sandes JM, Lima AAN, Tenório RP, et al. Study of benznidazole – cyclodextrin inclusion complexes , cytotoxicity and trypanocidal activity. 2012. https://doi.org/10.1007/s10847-011-0077-5.

  20. Liu C, Zhang W, Yang H, Sun W, Gong X, Zhao J, et al. A Water-soluble inclusion complex of pedunculoside with the polymer b-cyclodextrin: a novel anti-inflammation agent with low toxicity. PLoS ONE. 2014;9.

  21. Sheskey PJ, Cook WG, Cable CG. Handbook of pharmaceutical excipients, 8th: Pharmaceutical Press; 2017.

  22. Balaraman K, Vieira NC, Moussa F, Vacus J, Cojean S, Pomel S, et al. In vitro and in vivo antileishmanial properties of a 2-n-propylquinoline hydroxypropyl β-cyclodextrin formulation and pharmacokinetics via intravenous route. Biomed Pharmacother. 2015. https://doi.org/10.1016/j.biopha.2015.10.028.

  23. Ruiz HK, Serrano DR, Dea-ayuela MA, Bilbao-ramos PE, Bolás-fernández F, Torrado JJ, et al. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. 2014. https://doi.org/10.1016/j.ijpharm.2014.07.004.

  24. Bhattacharya SK, Dash AP. Treatment of visceral leishmaniasis: options and choice. Lancet Infect Dis. 2016. https://doi.org/10.1016/S1473-3099(15)00528-9.

  25. Carvalho SG, Siqueira LA, Zanini MS, dos Santos Matos AP, Quaresma CH, da Silva LM, et al. Physicochemical and in vitro biological evaluations of furazolidone-based β-cyclodextrin complexes in Leishmania amazonensis. Res Vet Sci. 2018. https://doi.org/10.1016/j.rvsc.2018.06.013.

  26. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using gold. Proteins. 2003. https://doi.org/10.1002/prot.10465.

  27. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, et al. The protein data bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys. 1978. https://doi.org/10.1016/0003-9861(78)90204-7.

  28. Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012. https://doi.org/10.1186/1758-2946-4-17.

  29. Singh R, Bharti N, Madan J, Hiremath SN. Characterization of cyclodextrin inclusion complexes – a review. J Pharm Sci Technol. 2010;2:171–83.

    CAS  Google Scholar 

  30. Mumuni MA, Kenechukwu FC, Ofokansi KC, Attama AA, Díaz DD. Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment. Carbohydr Polym. 2020. https://doi.org/10.1016/j.carbpol.2019.115506.

  31. Kenechukwu FC, Attama AA, Ibezim EC, Nnamani PO, Umeyor CE, Uronnachi EM, et al. Novel intravaginal drug delivery system based on molecularly PEGylated lipid matrices for improved antifungal activity of miconazole nitrate. Biomed Res Int. 2018. https://doi.org/10.1155/2018/3714329.

  32. Kenechukwu FC, Attama AA, Ibezim EC, Nnamani PO, Umeyor CE, Uronnachi EM, et al. Surface-modified mucoadhesive microgels as a controlled release system for miconazole nitrate to improve localized treatment of vulvovaginal candidiasis. Eur J Pharm Sci. 2018. https://doi.org/10.1016/j.ejps.2017.10.002.

  33. Kenechukwu FC, Momoh MA, Nnamani PO, Attama AA. Solid lipid micro-dispersions (SLMs) based on PEGylated solidified reverse micellar solutions (SRMS): A novel carrier system for gentamicin. Drug Deliv. 2015. https://doi.org/10.3109/10717544.2014.900152.

  34. Kenechukwu FC, Attama AA, Ibezim EC, Nnamani PO, Umeyor CE, Uronnachi EM, et al. Tailor-made mucoadhesive lipid nanogel improves oromucosal antimycotic activity of encapsulated miconazole nitrate. Eur J Nanomed. 2017. https://doi.org/10.1515/ejnm-2017-0010.

  35. Attama AA, Kenechukwu FC, Onuigbo EB, Nnamani PO, Obitte N, Finke JH, et al. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and antimalarials - artemether and lumefantrine: evaluation of cellular uptake and antimalarial activity. Eur J Nanomed. 2016. https://doi.org/10.1515/ejnm-2016-0009.

  36. Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978. https://doi.org/10.1107/S0021889878012844.

  37. Jain SK, Sahu R, Walker LA, Tekwani BL. A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. J Vis Exp. 2012. https://doi.org/10.3791/4054.

  38. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983. https://doi.org/10.1016/0022-1759(83)90303-4.

  39. Rolón M, Vega C, Escario JA, Gómez-Barrio A. Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol Res. 2006. https://doi.org/10.1007/s00436-006-0126-y.

  40. Veiga FJB, Pecorelli CCMF, Ribeiro L. As ciclodextrinas e a tecnologia farmacêutica. 2006.

    Google Scholar 

  41. Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today. 2016. https://doi.org/10.1016/j.drudis.2015.11.017.

  42. Pubchem. Furazolidone. 2020. pubchem.ncbi.nlm.nih.gov/compound/Furazolidone. Accessed 26 May 2020

  43. Del Valle EMM. Cyclodextrins and their uses : a review. 2004; 10.1016/S0032-9592(03)00258-9

  44. Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005. https://doi.org/10.1517/17425247.2.1.335.

  45. Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol. 2005. https://doi.org/10.1016/j.fct.2005.03.007.

  46. Takahashi AI, Veiga FJB, Ferraz HG. Literature review of cyclodextrins inclusion complexes characterization - Part I: phase solubility diagram, dissolution and scanning electron microscopy. Int J Pharm Sci Rev Res. 2012;12:1–6.

    CAS  Google Scholar 

  47. Takahashi AI, Veiga FJB, Ferraz HG. A literature review of cyclodextrin inclusion complexes characterization - Part II: X-ray diffraction, infrared spectroscopy and nuclear magnetic resonance. Int J Pharm Sci Rev Res. 2012;12:8–15.

    CAS  Google Scholar 

  48. Araújo MVG, Vieira EKB, Lázaro GS, Conegero LS, Ferreira OP, Almeida LE, et al. Inclusion complexes of pyrimethamine in 2-hydroxypropyl-b-cyclodextrin: characterization, phase solubility and molecular modelling. 2007. https://doi.org/10.1016/j.bmc.2007.06.013.

  49. Giordano F, Novak C, Moyano JR. Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta. 2001. https://doi.org/10.1016/S0040-6031(01)00665-7.

  50. Song LX, Xu P. A Comparative study on the thermal decomposition behaviors between -cyclodextrin and its inclusion complexes of organic amines. J Phys Chem A. 2008. https://doi.org/10.1021/jp806026q.

  51. Marian E, Jurca T, Kacso I, Miclaus M, Bratu I. Interactions analysis between furazolidone and excipients used in pharmaceutical forms. Rev Chim. 2013;64:1275–8.

    CAS  Google Scholar 

  52. Figueiras A, Carvalho RA, Ribeiro L, Torres-Labandeira JJ, Veiga FJB. Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. Eur J Pharm Biopharm. 2007. https://doi.org/10.1016/j.ejpb.2007.03.005.

  53. Marques CS, Carvalho SG, Bertoli LD, Villanova JCO, Pinheiro PF, dos Santos DCM, et al. β-Cyclodextrin inclusion complexes with essential oils: obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int. 2019. https://doi.org/10.1016/j.foodres.2019.01.016.

  54. Zhang GGZ, Law D, Schmitt EA, Qiu Y. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev. 2004. https://doi.org/10.1016/j.addr.2003.10.009.

  55. Martins MH, Calderini FB, Pessine FBT. Host – guest interactions between dapsone and b -cyclodextrin (part II): thermal analysis, spectroscopic characterization, and solubility studies. 2012. https://doi.org/10.1007/s10847-011-0089-1.

  56. Songkro S, Hayook N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with b-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem. 2012. https://doi.org/10.1007/s10847-011-9985-7.

  57. Vogt FG, Strohmeier M. 2D Solid-state NMR analysis of inclusion in drug − cyclodextrin complexes. Mol Pharm. 2012. https://doi.org/10.1021/mp300416w.

  58. Vajna B, Farkas I, Farkas A, Pataki H, Nagy Z. Characterization of drug – cyclodextrin formulations using Raman mapping and multivariate curve resolution. J Pharm Biomed. 2011. https://doi.org/10.1016/j.jpba.2011.05.005.

  59. Raoov M, Mohamad S, Abas MR. Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and As (V). Int J Mol Sci. 2014. https://doi.org/10.3390/ijms15010100.

  60. Narayanan G, Boy R, Gupta BS, Tonelli AE. Analytical techniques for characterizing cyclodextrins and their inclusion complexes with large and small molecular weight guest molecules. Polym Test. 2017. https://doi.org/10.1016/j.polymertesting.2017.07.023.

  61. Ficarra R, Tommasini S, Raneri D, Calabrò ML, Di Bella MR, Rustichelli C, et al. Study of flavonoids/β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J Pharm Biomed Anal. 2002;29:1005–14.

    Article  CAS  PubMed  Google Scholar 

  62. International Centre for Diffraction Data (ICDD). PDF card #32-1684. 2020. http://www.icdd.com. Accessed 27 May 2020.

  63. Veiga MD, Merino M. Interactions of oxyphenbutazone with different cyclodextrins in aqueous medium and in the solid state. J Pharm Biomed. 2002. https://doi.org/10.1016/S0731-7085(02)00042-0.

  64. Dang Z, Xin Song L, Qing Guo X, Yun Du F, Yang J, Yang J. Applications of powder X-ray diffraction to inclusion complexes of cyclodextrins. Curr Org Chem. 2011. https://doi.org/10.2174/138527211794518899.

  65. Andrade TA, Freitas TS, Araújo FO, Menezes PP, Dória GAA, Rabelo AS, et al. Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin. Biomed Pharmacother. 2017. https://doi.org/10.1016/j.biopha.2017.01.158.

  66. Tang P, Li S, Wang L, Yang H, Yan J, Li H. Inclusion complexes of chlorzoxazone with β- and hydroxypropyl-β-cyclodextrin: characterization, dissolution, and cytotoxicity. Carbohydr Polym. 2015. https://doi.org/10.1016/j.carbpol.2015.05.055.

  67. Aleem O, Kuchekar B, Pore Y, Late S. Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir. J Pharm Biomed Anal. 2008. https://doi.org/10.1016/j.jpba.2008.02.006.

  68. Loh GOK, Tze YTF, Peh KK. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin Kok-Khiang Peh. Asian J Pharm Sci. 2016. https://doi.org/10.1016/j.ajps.2016.02.009.

  69. Koito Y, Yamada K, Ando S. Solid-state NMR and wide-angle X-ray diffraction study of hydrofluoroether/β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem. 2013. https://doi.org/10.1007/s10847-012-0183-z.

  70. Paradowska K, Wawer I. Solid-state NMR in the analysis of drugs and naturally occurring materials. J Pharm Biomed Anal. 2013. https://doi.org/10.1016/j.jpba.2013.09.032.

  71. Furó I, Pócsik I, Tompa K. Solid State 1H-NMR study of β-cyclodextrin-water complexes. Carbohydr Res. 1986;6:85–93.

    Article  Google Scholar 

  72. Priotti J, Ferreira MJG, Lamas MC, Leonardi D, Salomon CJ, Nunes TG. First solid-state NMR spectroscopy evaluation of complexes of benznidazole with ciclodextrin derivatives. Carbohydr Polym. 2000. https://doi.org/10.1016/j.carbpol.2015.05.045.

  73. Holzer W. Determination of the stereochemistry of chemotherapeutics derived from 5-nitrofurfural: NOE difference spectroscopy as a simple and reliable method. 1992. https://doi.org/10.1002/ardp.19923251205.

  74. Tseng CH, Peled S, Nascimben L, Oteiza E, Walsworth RL, Jolesz FA. NMR of laser-polarized 129Xe in Blood foam. 1997. https://doi.org/10.1006/jmre.1997.1145.

  75. Lai S, Locci E, Piras A, Porcedda S, Lai A, Marongiu B. Imazalil Á cyclomaltoheptaose ( b -cyclodextrin ) inclusion complex : preparation by supercritical carbon dioxide and 13 C CPMAS and 1 H NMR characterization. Carbohydr Res. 2003. https://doi.org/10.1016/s008-6215(03)00358-6.

  76. Jäger A, Schaumann GE, Bertmer M. Organic geochemistry optimized NMR spectroscopic strategy to characterize water dynamics in soil samples. 2011. https://doi.org/10.1016/j.orggeochem.2011.03.021.

  77. Agarwal UP, Reiner RS, Ralph SA. Cellulose I crystallinity determination using FT-Raman spectroscopy: Univariate and multivariate methods. Cellulose. 2010. https://doi.org/10.1007/s10570-010-9420-z.

  78. Hédoux A, Guinet Y, Descamps M. The contribution of Raman spectroscopy to the analysis of phase transformations in pharmaceutical compounds. Int J Pharm. 2011. https://doi.org/10.1016/j.ijpharm.2011.01.031.

  79. Furuyama N, Hasegawa S, Hamaura T, Yada S, Nakagami H, Yonemochi E, et al. Evaluation of solid dispersions on a molecular level by the Raman mapping technique. Int J Pharm. 2008. https://doi.org/10.1016/j.ijpharm.2008.05.009.

  80. Yapuchura ER, Tartaglia RS, Cunha AG, Freitas JCC, Emmerich FG. Observation of the transformation of silica phytoliths into SiC and SiO2 particles in biomass-derived carbons by using SEM/EDS, Raman spectroscopy, and XRD. J Mater Sci. 2018. https://doi.org/10.1007/s10853-018-3130-6.

  81. Yu W, Huang Y, Pei L, Fan Y, Wang X, Lai K. Magnetic FeAg hybrid nanoparticles as surface-enhanced raman scattering substrate for trace analysis of furazolidone in fish feeds. J Nanomater. 2014. https://doi.org/10.1155/2014/796575.

  82. Zhang Y, Huang Y, Zhai F, Du R, Liu Y, Lai K. Analyses of enrofloxacin , furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chem. 2012. https://doi.org/10.1016/j.foodchem.2012.04.082.

  83. Somer A, Roik JR, Ribeiro MA, Urban AM, Schoeffel A, Urban VM, et al. Nystatin complexation with β-cyclodextrin: spectroscopic evaluation of inclusion by FT-Raman, photoacoustic spectroscopy, and 1H NMR. Mater Chem Phys. 2020. https://doi.org/10.1016/j.matchemphys.2019.122117.

  84. Martins ML, Eckert J, Jacobsen H, dos Santos EC, Ignazzi R, de Araujo DR, et al. Raman and infrared spectroscopies and X-ray diffraction data on bupivacaine and ropivacaine complexed with 2-hydroxypropyl-β-cyclodextrin. Data Br. 2017. https://doi.org/10.1016/j.dib.2017.08.053.

  85. Valentini SR, Nogueira AC, Fenelon VC, Sato F, Medina AN, Santana RG, et al. Insulin complexation with hydroxypropyl-beta-cyclodextrin: spectroscopic evaluation of molecular inclusion and use of the complex in gel for healing of pressure ulcers. Int J Pharm. 2015. https://doi.org/10.1016/j.ijpharm.2015.05.037.

  86. Valarini O Jr, Barão CE, Matioli G, Zanoelo EF, Cardozo-Filho L, Faria-Filho F. Complexation and physicochemical analysis of hydrophobic molecules of methyl jasmonate with hydroxypropyl-β- cyclodextrin. Acta Sci - Technol. 2019. https://doi.org/10.4025/actascitechnol.v41i1.39611.

  87. Arrúa EC, Ferreira MJG, Salomon CJ, Nunes TG. Elucidating the guest-host interactions and complex formation of praziquantel and cyclodextrin derivatives by 13C and 15 N solid-state NMR spectroscopy. Int J Pharm. 2015. https://doi.org/10.1016/j.ijpharm.2015.11.026.

  88. Frézard F, Martins PS, Bahia APCO, Le Moyec L, de Melo AL, Pimenta AMC, et al. Enhanced oral delivery of antimony from meglumine antimoniate/β-cyclodextrin nanoassemblies. Int J Pharm. 2008. https://doi.org/10.1016/j.ijpharm.2007.06.029.

  89. Lopes MS, Júnior Sales PA, Lopes AGF, Yoshida MI, da Silva THA, Romanha AJ, et al. The activity of a metronidazole analogue and its β-cyclodextrin complex against Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2011. https://doi.org/10.1590/S0074-02762011000800027.

  90. Soares Sobrinho JL, Soares MFL. Improving the solubility of the antichagasic drug benznidazole through formation. Quim Nova. 2011. https://doi.org/10.1590/S0100-40422011000900010.

  91. Leonardi D, Bombardiere ME, Salomon CJ. International Journal of Biological Macromolecules Effects of benznidazole: cyclodextrin complexes on the drug bioavailability upon oral administration to rats. Int J Biol Macromol. 2013. https://doi.org/10.1016/j.ijbiomac.2013.10.007.

  92. Croft SL, Brun R. In vitro and in vivo models for the identification and evaluation of drugs active against Trypanosoma and Leishmania. J Parasit Dis. 2002:165–75.

  93. Berman JD, Lee LS. Activity of oral drugs against Leishmania tropica in human macrophages in vitro. Am Soc Trop Med Hyg. 1983. https://doi.org/10.1515/ejnm-2016-0009.

  94. Reimão JQ, Taniwaki NN, Tempone AG. Furazolidone is a selective in vitro candidate against Leishmania (L.) chagasi: an ultrastructural study. Parasitol Res. 2010. https://doi.org/10.1007/s00436-010-1826-x.

  95. Bézivin C, Tomasi S, Lohezic-Le Devehat F, Boustie J. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine. 2003. https://doi.org/10.1078/094471103322331458.

  96. Silva FMA, Koolen HHF, Lima JPS, Santos DMF, Jardim IS, Afonso D, et al. Leishmanicidal activity of fractions rich in aporphine alkaloids from Amazonian Unonopsis species. 2012. https://doi.org/10.1590/S0102-695X2012005000103.

  97. Gabelica V, Galic N, De Pauw E. On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry. J Am Soc Mass Spectrom. 2002. https://doi.org/10.1016/S1044-0305(02)00416-6.

  98. Messner M, Kurkov SV, Jansook P, Loftsson T. Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm. 2010. https://doi.org/10.1016/j.ijpharm.2009.11.035.

  99. Loftsson T, Másson M, Sigurdsson HH. Cyclodextrins and drug permeability through semi-permeable cellophane membranes. 2002. https://doi.org/10.1016/s0378-5173(01)00895-x.

  100. Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J Pharm Sci. 2012. https://doi.org/10.1002/jps.23146.

  101. Garcia J, Martins LG, Pons M. NMR spectroscopy in solution. Supramol Chem Mol Nanomater. 2012;2:297–318.

    CAS  Google Scholar 

  102. Martins PS, Ribeiro RR, Bahia APC, Neto RLM, Frézard F, Pimenta AMC, et al. Physicochemical characterization of orally-active meglumine antimoniate/beta-cyclodextrin nanoassemblies: non-inclusion interactions and sustained drug release properties. Brazilian J Phys. 2009. https://doi.org/10.1590/S0103-97332009000200016.

  103. Spamer E, Müller DG, Wessels PL, Venter JP. Characterization of the complexes of furosemide with 2-hydroxypropyl-β-cyclodextrin and sulfobutyl ether-7-β-cyclodextrin. Eur J Pharm Sci. 2002. https://doi.org/10.1016/s0928-0987(02)00107-0.

Download references

Funding

The authors are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES; financing modality 001), Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, Brazil (FAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq). The authors also acknowledge the support from the Laboratory for Research and Development of Methodologies for Crude Oil Analysis (LabPetro) and from the Laboratory of Cellular Ultrastructure Carlos Alberto Redins (LUCCAR), Federal University of Espírito Santo (UFES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Gonçalves Carvalho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, S.G., Cipriano, D.F., de Freitas, J.C.C. et al. Physicochemical characterization and in vitro biological evaluation of solid compounds from furazolidone-based cyclodextrins for use as leishmanicidal agents. Drug Deliv. and Transl. Res. 10, 1788–1809 (2020). https://doi.org/10.1007/s13346-020-00841-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00841-1

Keywords

Navigation