Skip to main content

Advertisement

Log in

Implantable anti-angiogenic scaffolds for treatment of neovascular ocular pathologies

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The retinal physiology can accrue oxidative damage and inflammatory insults due to age and metabolic irregularities. Two notable diseases that involve retinal and choroidal neovascularization are proliferative diabetic retinopathy and wet age-related macular degeneration. Currently, these diseases are mainly treated with anti-VEGF drugs (VEGF = vascular endothelial growth factor), generally on a monthly dosage scheme. We discuss recent developments for the treatment of these diseases, including bioactive tissue-engineered materials, which may reduce frequency of dosage and propose a path forward for improving patient outcomes.

Development of materials for long-term intravitreal delivery for management of posterior segment diseases

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yaqoob Z, Wu J, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques. 2005;39:S6–13.

    PubMed  Google Scholar 

  2. Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358:2606–17.

    CAS  PubMed  Google Scholar 

  3. Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44:260–77.

    PubMed  Google Scholar 

  4. Viets K, Eldred K, Johnston RJ Jr. Mechanisms of photoreceptor patterning in vertebrates and invertebrates. Trends Genet. 2016;32:638–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong TY, Cheung CM, Larsen M, Sharma S, Simo R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012.

    PubMed  Google Scholar 

  6. van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 2014;232:151–64.

    PubMed  Google Scholar 

  7. Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol. 2018;11:1856–64.

    PubMed  PubMed Central  Google Scholar 

  8. SpringerLink (Online service); Springer International: Berlin, etc.; 1982, p v.

  9. American Diabetes Association 2017; Vol. 2017.

  10. Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304:649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hammes HP, Lin J, Bretzel RG, Brownlee M, Breier G. Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes. 1998;47:401–6.

    CAS  PubMed  Google Scholar 

  12. Nentwich MM, Ulbig MW. Diabetic retinopathy - ocular complications of diabetes mellitus. World J Diabetes. 2015;6:489–99.

    PubMed  PubMed Central  Google Scholar 

  13. Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol. 2013;2013:343560.

    PubMed  PubMed Central  Google Scholar 

  14. Simo R, Carrasco E, Garcia-Ramirez M, Hernandez C. Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev. 2006;2:71–98.

    CAS  PubMed  Google Scholar 

  15. Querques G, Delle Noci N. Proinflammatory cytokines and angiogenic and antiangiogenic factors in vitreous of patients with proliferative diabetic retinopathy and Eales' disease (ED). Retina. 2009;29:121–3 author reply 123.

    PubMed  Google Scholar 

  16. Stem MS, Gardner TW. Neurodegeneration in the pathogenesis of diabetic retinopathy: molecular mechanisms and therapeutic implications. Curr Med Chem. 2013;20:3241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Feenstra DJ, Yego EC, Mohr S. Modes of retinal cell death in diabetic retinopathy. J Clin Exp Ophthalmol. 2013;4:298.

    PubMed  PubMed Central  Google Scholar 

  18. Kadlubowska J, Malaguarnera L, Waz P, Zorena K. Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol. 2016;14:831–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes. 2002;51:2241–8.

    CAS  PubMed  Google Scholar 

  20. Yoshimura T, Sonoda KH, Sugahara M, Mochizuki Y, Enaida H, Oshima Y, et al. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One. 2009;4:e8158.

    PubMed  PubMed Central  Google Scholar 

  21. Adamiec-Mroczek J, Oficjalska-Mlynczak J, Misiuk-Hojlo M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: analysis of vitreous samples. Cytokine. 2010;49:269–74.

    CAS  PubMed  Google Scholar 

  22. Liu Y, Biarnes Costa M, Gerhardinger C. IL-1beta is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1beta autostimulation. PLoS One. 2012;7:e36949.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Aghdam SY, Gurel Z, Ghaffarieh A, Sorenson CM, Sheibani N. High glucose and diabetes modulate cellular proteasome function: implications in the pathogenesis of diabetes complications. Biochem Biophys Res Commun. 2013;432:339–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci. 2011;52:2160–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21(Suppl 6):S3–9.

    PubMed  Google Scholar 

  26. Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013;34:19–48.

    CAS  PubMed  Google Scholar 

  27. Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care. 2003;26:2653–64.

    PubMed  Google Scholar 

  28. Lang GE. Diabetic macular edema. Ophthalmologica. 2012;227(Suppl 1):21–9.

    CAS  PubMed  Google Scholar 

  29. Petropoulos IK, Koliopoulos JX. Severe proliferative diabetic retinopathy. N Engl J Med. 2007;356:1979.

    CAS  PubMed  Google Scholar 

  30. Laouri M, Chen E, Looman M, Gallagher M. The burden of disease of retinal vein occlusion: review of the literature. Eye (Lond). 2011;25:981–8.

    CAS  Google Scholar 

  31. Brand CS. Management of retinal vascular diseases: a patient-centric approach. Eye (Lond). 2012;26(Suppl 2):S1–16.

    CAS  Google Scholar 

  32. Cummings M, Cunha-Vaz J. Treatment of neovascular age-related macular degeneration in patients with diabetes. Clin Ophthalmol. 2008;2:369–75.

    PubMed  PubMed Central  Google Scholar 

  33. Cheung CY, Ong YT, Ikram MK, Ong SY, Li X, Hilal S, et al. Microvascular network alterations in the retina of patients with Alzheimer's disease. Alzheimers Dement. 2014;10:135–42.

    PubMed  Google Scholar 

  34. Feke GT, Hyman BT, Stern RA, Pasquale LR. Retinal blood flow in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement (Amst). 2015;1:144–51.

    Google Scholar 

  35. Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer's disease. Prog Retin Eye Res. 2011;30:217–38.

    PubMed  Google Scholar 

  36. Keenan TD, Goldacre R, Goldacre MJ. Associations between age-related macular degeneration, Alzheimer disease, and dementia: record linkage study of hospital admissions. JAMA Ophthalmol. 2014;132:63–8.

    PubMed  Google Scholar 

  37. Snyder PJ, Johnson LN, Lim YY, Santos CY, Alber J, Maruff P, et al. Nonvascular retinal imaging markers of preclinical Alzheimer's disease. Alzheimers Dement (Amst). 2016;4:169–78.

    Google Scholar 

  38. Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med. 2017;9.

  39. Mukherjee N, McBurney-Lin S, Kuo A, Bedlack R, Tseng H. Retinal thinning in amyotrophic lateral sclerosis patients without ophthalmic disease. PLoS One. 2017;12:e0185242.

    PubMed  PubMed Central  Google Scholar 

  40. Seagle BL, Rezai KA, Kobori Y, Gasyna EM, Rezaei KA, Norris JR Jr. Melanin photoprotection in the human retinal pigment epithelium and its correlation with light-induced cell apoptosis. Proc Natl Acad Sci U S A. 2005;102:8978–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dowler JG. Laser management of diabetic retinopathy. J R Soc Med. 2003;96:277–9.

    PubMed  PubMed Central  Google Scholar 

  42. Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB 3rd, Miller M. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology. 2003;110:681–6.

    PubMed  Google Scholar 

  43. Silva PS, Sun JK, Aiello LP. Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy. Semin Ophthalmol. 2009;24:93–9.

    PubMed  Google Scholar 

  44. Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology. 2006;113(1695):e1691–15.

    Google Scholar 

  45. Mason JO 3rd, Nixon PA, White MF. Intravitreal injection of bevacizumab (Avastin) as adjunctive treatment of proliferative diabetic retinopathy. Am J Ophthalmol. 2006;142:685–8.

    CAS  PubMed  Google Scholar 

  46. Gonzalez VH, Giuliari GP, Banda RM, Guel DA. Intravitreal injection of pegaptanib sodium for proliferative diabetic retinopathy. Br J Ophthalmol. 2009;93:1474–8.

    CAS  PubMed  Google Scholar 

  47. Elman MJ, Bressler NM, Qin H, Beck RW, Ferris FL 3rd, Friedman SM, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2011;118:609–14.

    PubMed  PubMed Central  Google Scholar 

  48. Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372:1193–203.

    CAS  PubMed  Google Scholar 

  49. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5:123–32.

    CAS  PubMed  Google Scholar 

  50. Ip MS, Domalpally A, Hopkins JJ, Wong P, Ehrlich JS. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol. 2012;130:1145–52.

    CAS  PubMed  Google Scholar 

  51. Sivaprasad S, Prevost AT, Vasconcelos JC, Riddell A, Murphy C, Kelly J, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet. 2017;389:2193–203.

    CAS  PubMed  Google Scholar 

  52. Ross EL, Hutton DW, Stein JD, Bressler NM, Jampol LM, Glassman AR, et al. Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment: analysis from the diabetic retinopathy clinical research network comparative effectiveness trial. JAMA Ophthalmol. 2016;134:888–96.

    PubMed  PubMed Central  Google Scholar 

  53. Jonas JB. Intravitreal triamcinolone acetonide for diabetic retinopathy. Dev Ophthalmol. 2007;39:96–110.

    CAS  PubMed  Google Scholar 

  54. Takamura Y, Shimura M, Katome T, Someya H, Sugimoto M, Hirano T, et al. Effect of intravitreal triamcinolone acetonide injection at the end of vitrectomy for vitreous haemorrhage related to proliferative diabetic retinopathy. Br J Ophthalmol. 2018.

  55. Dugel PU, Bandello F, Loewenstein A. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol. 2015;9:1321–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Campochiaro PA, Marcus DM, Awh CC, Regillo C, Adamis AP, Bantseev V, et al. The port delivery system with ranibizumab for neovascular age-related macular degeneration: results from the randomized phase 2 ladder clinical trial. Ophthalmology. 2019;126:1141–54.

    PubMed  Google Scholar 

  57. Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 2007;27:816–24.

    PubMed  Google Scholar 

  58. Elman MJ, Ayala A, Bressler NM, Browning D, Flaxel CJ, Glassman AR, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology. 2015;122:375–81.

    PubMed  Google Scholar 

  59. Reichle ML. Complications of intravitreal steroid injections. Optometry. 2005;76:450–60.

    PubMed  Google Scholar 

  60. Heier JS, Antoszyk AN, Pavan PR, Leff SR, Rosenfeld PJ, Ciulla TA, et al. Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. Ophthalmology. 2006;113(633):e631–4.

    Google Scholar 

  61. Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology. 2006;113:363–72 e365.

    PubMed  Google Scholar 

  62. Dugel PU, Koh A, Ogura Y, Jaffe GJ, Schmidt-Erfurth U, Brown DM, et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology. 2019.

  63. Dugel PU, Jaffe GJ, Sallstig P, Warburton J, Weichselberger A, Wieland M, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124:1296–304.

    PubMed  Google Scholar 

  64. Stahl A, Stumpp MT, Schlegel A, Ekawardhani S, Lehrling C, Martin G, et al. Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis. 2013;16:101–11.

    CAS  PubMed  Google Scholar 

  65. Smithwick E, Stewart MW. Designed ankyrin repeat proteins: a look at their evolving use in medicine with a focus on the treatment of chorioretinal vascular disorders. Antiinflamm Antiallergy Agents Med Chem. 2017;16:33–45.

    CAS  PubMed  Google Scholar 

  66. Hussain RM, Ciulla TA. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin Emerg Drugs. 2017;22:235–46.

    CAS  PubMed  Google Scholar 

  67. Jaffe GJ, Ciulla TA, Ciardella AP, Devin F, Dugel PU, Eandi CM, et al. Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase IIb, multicenter, randomized controlled trial. Ophthalmology. 2017;124:224–34.

    PubMed  Google Scholar 

  68. Yaspan BL, Williams DF, Holz FG, Regillo CD, Li Z, Dressen A, et al. Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci Transl Med. 2017;9.

  69. Dolgin E. Age-related macular degeneration foils drugmakers. Nat Biotechnol. 2017;35:1000–1.

    CAS  PubMed  Google Scholar 

  70. Rosenfeld PJ, Feuer WJ. Lessons from recent phase III trial failures: don't sesign phase III trials based on retrospective subgroup analyses from phase II trials. Ophthalmology. 2018;125:1488–91.

    PubMed  Google Scholar 

  71. Pocock SJ, Stone GW. The primary outcome fails - what next? N Engl J Med. 2016;375:861–70.

    PubMed  Google Scholar 

  72. PanOptica Inc.

  73. Thakur A, Scheinman RI, Rao VR, Kompella UB. Pazopanib, a multitargeted tyrosine kinase inhibitor, reduces diabetic retinal vascular leukostasis and leakage. Microvasc Res. 2011;82:346–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Samiy N. Gene therapy for retinal diseases. J Ophthalmic Vis Res. 2014;9:506–9.

    PubMed  PubMed Central  Google Scholar 

  75. MacLaren RE, Bennett J, Schwartz SD. Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology. 2016;123:S98–S106.

    PubMed  PubMed Central  Google Scholar 

  76. McGill TJ, Bohana-Kashtan O, Stoddard JW, Andrews MD, Pandit N, Rosenberg-Belmaker LR, et al. Long-term efficacy of GMP grade xeno-free hESC-derived RPE cells following transplantation. Transl Vis Sci Technol. 2017;6:17.

    PubMed  PubMed Central  Google Scholar 

  77. Ben M'Barek K, Habeler W, Plancheron A, Jarraya M, Regent F, Terray A, et al. Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med. 2017;9.

  78. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10.

  79. Byrne LC. What's old is new again: autologous stem cell transplant for AMD. Sci Transl Med. 2017;9.

  80. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.

    CAS  PubMed  Google Scholar 

  81. Holmes D. Retinal repair: visions of the future. Nature. 2018;561:S1.

    CAS  PubMed  Google Scholar 

  82. Abbasi J. Stem cell implants for age-related macular degeneration. JAMA. 2018;319:2263.

    PubMed  Google Scholar 

  83. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11.

  84. McGill TJ, Stoddard J, Renner LM, Messaoudi I, Bharti K, Mitalipov S, et al. Allogeneic iPSC-derived RPE cell graft failure following transplantation into the subretinal space in nonhuman primates. Invest Ophthalmol Vis Sci. 2018;59:1374–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nguyen PK, Sarkar B, Siddiqui Z, McGowan M, Iglesias-Montoro P, Rachapudi S, et al. Self-assembly of an anti-angiogenic nanofibrous peptide hydrogel. ACS Appl Bio Mater. 2018;1:865–70.

    CAS  Google Scholar 

  86. Bhise NS, Shmueli RB, Sunshine JC, Tzeng SY, Green JJ. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opin Drug Deliv. 2011;8:485–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dong H, Paramonov SE, Aulisa L, Bakota EL, Hartgerink JD. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. J Am Chem Soc. 2007;129:12468–72.

    CAS  PubMed  Google Scholar 

  88. Aulisa L, Dong H, Hartgerink JD. Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules. 2009;10:2694–8.

    CAS  PubMed  Google Scholar 

  89. Kumar VA, Taylor NL, Shi S, Wang BK, Jalan AA, Kang MK, et al. Highly angiogenic peptide nanofibers. ACS Nano. 2015;9:860–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Moore AN, Hartgerink JD. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc Chem Res. 2017;50:714–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Moore AN, Lopez Silva TL, Carrejo NC, Origel Marmolejo CA, Li IC, Hartgerink JD. Nanofibrous peptide hydrogel elicits angiogenesis and neurogenesis without drugs, proteins, or cells. Biomaterials. 2018;161:154–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sarkar B, Siddiqui Z, Nguyen PK, Dube N, Fu W, Park S, et al. Membrane-disrupting nanofibrous peptide hydrogels. ACS Biomat Sci Eng. 2019. https://doi.org/10.1021/acsbiomaterials.1029b00967.

  93. Kumar VA, Liu Q, Wickremasinghe NC, Shi S, Cornwright TT, Deng Y, et al. Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials. 2016;98:113–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hitscherich P, Nguyen PK, Kannan A, Chirayath A, Anur S, Sarkar B, et al. Injectable self-assembling peptide hydrogels for tissue writing and embryonic stem cell culture. J Biomed Nanotechnol. 2018;14:802–7.

    CAS  PubMed  Google Scholar 

  95. Nguyen PK, Gao W, Patel SD, Siddiqui Z, Weiner S, Shimizu E, et al. Self-assembly of a dentinogenic peptide hydrogel. ACS Omega. 2018;3:5980–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kumar VA, Taylor NL, Shi S, Wickremasinghe NC, D'Souza RN, Hartgerink JD. Self-assembling multidomain peptides tailor biological responses through biphasic release. Biomaterials. 2015;52:71–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kumar VA, Shi S, Wang BK, Li IC, Jalan AA, Sarkar B, et al. Drug-triggered and cross-linked self-assembling nanofibrous hydrogels. J Am Chem Soc. 2015;137:4823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li IC, Moore AN, Hartgerink JD. "Missing tooth" multidomain peptide nanofibers for delivery of small molecule drugs. Biomacromolecules. 2016;17:2087–95.

    CAS  PubMed  Google Scholar 

  99. Leach DG, Dharmaraj N, Piotrowski SL, Lopez-Silva TL, Lei YL, Sikora AG, et al. STINGel: controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials. 2018;163:67–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic self-assembling peptide scaffolds for functional tissue regeneration. Biomacromolecules. 2018;19:3597–611.

    CAS  PubMed  Google Scholar 

  101. Webber MJ, Tongers J, Newcomb CJ, Marquardt KT, Bauersachs J, Losordo DW, et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci U S A. 2011;108:13438–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li R, Xu J, Wong DSH, Li J, Zhao P, Bian L. Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/beta-catenin signaling. Biomaterials. 2017;145:33–43.

    CAS  PubMed  Google Scholar 

  103. Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS. Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol. 2011;12:1101–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res. 2005;65:4663–72.

    CAS  PubMed  Google Scholar 

  105. Zhang SX, Sima J, Wang JJ, Shao C, Fant J, Ma JX. Systemic and periocular deliveries of plasminogen kringle 5 reduce vascular leakage in rat models of oxygen-induced retinopathy and diabetes. Curr Eye Res. 2005;30:681–9.

    CAS  PubMed  Google Scholar 

  106. Nguyen TM, Subramanian IV, Kelekar A, Ramakrishnan S. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood. 2007;109:4793–802.

    CAS  PubMed  Google Scholar 

  107. Yi ZF, Cho SG, Zhao H, Wu YY, Luo J, Li D, et al. A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int J Cancer. 2009;124:843–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ponce ML, Hibino S, Lebioda AM, Mochizuki M, Nomizu M, Kleinman HK. Identification of a potent peptide antagonist to an active laminin-1 sequence that blocks angiogenesis and tumor growth. Cancer Res. 2003;63:5060–4.

    CAS  PubMed  Google Scholar 

  109. Dixelius J, Olsson AK, Thulin A, Lee C, Johansson I, Claesson-Welsh L. Minimal active domain and mechanism of action of the angiogenesis inhibitor histidine-rich glycoprotein. Cancer Res. 2006;66:2089–97.

    CAS  PubMed  Google Scholar 

  110. Cai X, McGinnis JF. Diabetic retinopathy: animal models, therapies, and perspectives. J Diabetes Res. 2016;2016:3789217.

    PubMed  PubMed Central  Google Scholar 

  111. Olivares AM, Althoff K, Chen GF, Wu S, Morrisson MA, DeAngelis MM, et al. Animal models of diabetic retinopathy. Curr Diab Rep. 2017;17:93.

    PubMed  PubMed Central  Google Scholar 

  112. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet. 2000;26:270–1.

    CAS  PubMed  Google Scholar 

  113. Khayat M, Lois N, Williams M, Stitt AW. Animal models of retinal vein occlusion" Investig Opthalmol Vis Sci. 2017;58.

  114. Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Asp Med. 2012;33:487–509.

    CAS  Google Scholar 

  115. Lai AK, Lo AC. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res. 2013;2013:106594.

    PubMed  PubMed Central  Google Scholar 

  116. Fletcher EL, Jobling AI, Greferath U, Mills SA, Waugh M, Ho T, et al. Studying age-related macular degeneration using animal models. Optom Vis Sci. 2014;91:878–86.

    PubMed  PubMed Central  Google Scholar 

  117. Singh RP, Habbu KA, Bedi R, Silva FQ, Ehlers JP, Schachat AP, et al. A retrospective study of the influence of the vitreomacular interface on macular oedema secondary to retinal vein occlusion. Br J Ophthalmol. 2017;101:1340–5.

    PubMed  Google Scholar 

  118. Young JM, Wai KM, Silva FQ, Conti FF, Srivastava SK, Ehlers JP, et al. Long-term outcomes of anti-VEGF therapy in patients with macular edema secondary to retinal vein occlusion. J VitreoRetinal Dis. 2017;1:298–304.

    Google Scholar 

  119. Au A, Parikh VS, Singh RP, Ehlers JP, Yuan A, Rachitskaya AV, et al. Comparison of anti-VEGF therapies on fibrovascular pigment epithelial detachments in age-related macular degeneration. Br J Ophthalmol. 2017;101:970–5.

    PubMed  Google Scholar 

  120. Wai KM, Khan M, Srivastava S, Rachitskaya A, Silva FQ, Deasy R, et al. Impact of initial visual acuity on anti-VEGF treatment outcomes in patients with macular oedema secondary to retinal vein occlusions in routine clinical practice. Br J Ophthalmol. 2017;101:574–9.

    PubMed  Google Scholar 

  121. Bell BA, Yuan A, Dicicco RM, Fogerty J, Lessieur EM, Perkins BD. The adult zebrafish retina: in vivo optical sectioning with confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography. Exp Eye Res. 2016;153:65–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Edmond M, Yuan A, Bell BA, Sharma A, DiCicco RM, Tucker L, et al. The feasibility of spectral-domain optical coherence tomography grading of anterior chamber inflammation in a rabbit model of anterior uveitis. Invest Ophthalmol Vis Sci. 2016;57:OCT184–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yuan A, Ahmad BU, Xu D, Singh RP, Kaiser PK, Martin DF, et al. Comparison of intravitreal ranibizumab and bevacizumab for the treatment of macular edema secondary to retinal vein occlusion. Int J Ophthalmol. 2014;7:86–91.

    PubMed  PubMed Central  Google Scholar 

  124. Yuan A, Singh RP. Radiation maculopathy treated with ranibizumab. J Clin Exp Ophthalmol. 2011;02.

  125. Yuan A, Singh R. Ranibizumab for the treatment of macular edema following retinal vein occlusion. Clin Investig. 2011;1:1445–54.

    CAS  Google Scholar 

  126. Bell BA, Xie J, Yuan A, Kaul C, Hollyfield JG, Anand-Apte B. Retinal vasculature of adult zebrafish: in vivo imaging using confocal scanning laser ophthalmoscopy. Exp Eye Res. 2014;129:107–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pierro L, Zampedri E, Milani P, Gagliardi M, Isola V, Pece A. Spectral domain OCT versus time domain OCT in the evaluation of macular features related to wet age-related macular degeneration. Clin Ophthalmol. 2012;6:219–23.

    PubMed  PubMed Central  Google Scholar 

  128. Rachitskaya AV, Ehlers JP, Yuan A. Intraoperative OCT of a retinal tack. Ophthalmol Retina. 2017;1:420.

    PubMed  PubMed Central  Google Scholar 

  129. Rachitskaya AV, Yuan A, Singh RP, Sears JE, Schachat AP. Optical coherence tomography of outer retinal holes in senile retinoschisis and schisis-detachment. Br J Ophthalmol. 2017;101:445–8.

    PubMed  Google Scholar 

  130. Rachitskaya AV, Yuan A, Marino MJ, Reese J, Ehlers JP. Intraoperative OCT imaging of the Argus II retinal prosthesis system. Ophthalmic Surg Lasers Imaging Retina. 2016;47:999–1003.

    PubMed  PubMed Central  Google Scholar 

  131. Ehlers JP, Petkovsek DS, Yuan A, Singh RP, Srivastava SK. Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT. Ophthalmic Surg Lasers Imaging Retina. 2015;46:327–32.

    PubMed  PubMed Central  Google Scholar 

  132. DiCicco RM, Bell BA, Kaul C, Hollyfield JG, Anand-Apte B, Perkins BD, et al. Retinal regeneration following OCT-guided laser injury in zebrafish. Investig Opthalmol Vis Sci. 2014;55.

  133. Ehlers JP, Yuan A, Kaiser PK, Dhoot D, Sears JE, Martin DF, et al. Trans-tamponade optical coherence tomography: postoperative imaging in gas-filled eyes. Retina. 2013;33:1172–8.

    PubMed  Google Scholar 

  134. Xu D, Yuan A, Kaiser PK, Srivastava SK, Singh RP, Sears JE, et al. A novel segmentation algorithm for volumetric analysis of macular hole boundaries identified with optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:163–9.

    PubMed  Google Scholar 

  135. Dhoot DS, Huo S, Yuan A, Xu D, Srivistava S, Ehlers JP, et al. Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol. 2013;97:66–9.

    PubMed  Google Scholar 

  136. Roth BM, Yuan A, Ehlers JP. Retinal and choroidal findings in oxalate retinopathy using EDI-OCT. Ophthalmic Surg Lasers Imaging. 2012;43:S142–4.

    PubMed  Google Scholar 

  137. Yuan A, Ehlers JP. Crystalline retinopathy from primary hyperoxaluria. Retina. 2012;32:1994–5.

    PubMed  Google Scholar 

  138. Yuan A, Kaines A, Jain A, Reddy S, Schwartz SD, Sarraf D. Ultra-wide-field and autofluorescence imaging of choroidal dystrophies. Ophthalmic Surg Lasers Imaging. 2010;41(Online):e1–5.

    PubMed  Google Scholar 

  139. DeFrancesco L. Three deaths sink Affymax. Nat Biotechnol. 2013;31:270.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Alex Yuan (Cleveland Clinic) for helpful discussions and feedback.

Funding

This work was supported by grant NIH R15 EY029504, NSF IIP 1903617, the NJIT Undergraduate Research and Innovation (URI) Program, and NJIT Startup funds (to V.A.K.).

Author information

Authors and Affiliations

Authors

Contributions

The review was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Vivek A. Kumar.

Ethics declarations

Conflict of interest

V.A.K. has equity interests in start-up companies attempting to translate peptides from peptide-based technological platform.

Declaration of informed consent and animal studies

Not applicable for this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B., Siddiqui, Z., Kim, K.K. et al. Implantable anti-angiogenic scaffolds for treatment of neovascular ocular pathologies. Drug Deliv. and Transl. Res. 10, 1191–1202 (2020). https://doi.org/10.1007/s13346-020-00753-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00753-0

Keywords

Navigation