Skip to main content

Advertisement

Log in

PEG-conjugated triacontanol micelles as docetaxel delivery systems for enhanced anti-cancer efficacy

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

PEGylated triacontanol (mPEG2k-b-TRIA) was developed as a dual-functional polymer with remarkable biocompatibility. The polymer could self-assemble to micelles with critical micelle concentration (CMC) 17.62 μg mL−1. Docetaxel-loaded mPEG2k-b-TRIA micelles (DTX PMs) were fabricated to evaluate the feasibility of mPEG2k-b-TRIA as drug delivery system. DTX PMs achieved desirable particle size of 93.7 nm, drug loading of 6.66%, and drug encapsulation efficiency of 89.87%. The drug release was based on first-order kinetics model, thus enabling prolonged release. Meanwhile, pharmacokinetic study also revealed that DTX PMs could improve the exposure level of DTX and prolong its systemic circulation time. Furthermore, DTX PMs demonstrated significantly enhanced cytotoxicity and cellular uptake in vitro compared with DTX solution. The in vivo tumor inhibition study carried out on MCF-7 bearing BALB/c mice model also validated that DTX PMs exhibited stronger anti-tumor activity but low toxicity. Notably, mPEG2k-b-TRIA made some contribution to inhibit the growth of breast cancer cells in vitro and in vivo, indicating the potential as anti-tumor complementary agents. All the results suggested that mPEG2k-b-TRIA polymer as a vehicle in the formulation of anti-cancer drugs may provide an effective way to improve their therapeutic efficacy. Consequently, the mPEG2k-b-TRIA polymers would be another promising carrier for hydrophobic anti-cancer drugs delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CL:

Clearance rate

CLSM:

Confocal laser scanning microscopy

CMC:

Critical micelle concentration

CMPI:

2-Chloro-1-methylpyridinium iodide

DAPI:

4,6-Diamidino-2-phenylindole

DL:

Drug loading

DMAP:

4-Dimethylaminopyridine

DMF:

N,N-Dimethylformamide

DTX:

Docetaxel

DTX-PMs:

Docetaxel-loaded polymeric micelles

EE:

Encapsulation efficiency

EPR:

Enhanced permeability and retention

FT-IR:

Fourier transform infrared

GPC:

Gel permeation chromatography

HBSS:

Hank’s balanced salt solution

1H NMR:

1H nuclear magnetic resonance

IC50 :

Half maximal inhibitory concentration

IR:

Inhibition rate

MRT:

Mean residence time

mPEG2k-NH2 :

Monomethoxy poly(ethylene glycol)-amine; methoxy poly(ethylene glycol 2000)-triacontanol (mPEG2k-b-TRIA)

PBS:

Phosphate-buffered saline

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PMs:

Polymeric micelles

PS:

Physiological saline

SA:

Succinic anhydride

t 1/2 :

Elimination half-life

TEM:

Transmission electron microscope

TRIA:

Triacontanol

References

  1. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin. 2016;66(1):31–42. https://doi.org/10.3322/caac.21320.

    Article  PubMed  Google Scholar 

  2. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214. https://doi.org/10.1016/j.ijpharm.2012.08.042.

    Article  CAS  PubMed  Google Scholar 

  3. Talelli M, Rijcken CJF, Hennink WE, Lammers T. Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy. Curr Opin Solid State Mater Sci. 2012;16(6):302–9. https://doi.org/10.1016/j.cossms.2012.10.003.

    Article  CAS  Google Scholar 

  4. Zhang Y, Ren T, Gou J, Zhang L, Tao X, Tian B, et al. Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release. 2017;261:352–66. https://doi.org/10.1016/j.jconrel.2017.01.047.

    Article  CAS  PubMed  Google Scholar 

  5. Yu J, Deng H, Xie F, Chen W, Zhu B, Xu Q. The potential of pH-responsive PEG-hyperbranched polyacylhydrazone micelles for cancer therapy. Biomaterials. 2014;35(9):3132–44. https://doi.org/10.1016/j.biomaterials.2013.12.074.

    Article  CAS  PubMed  Google Scholar 

  6. Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159(3):312–23. https://doi.org/10.1016/j.jconrel.2011.12.012.

    Article  CAS  PubMed  Google Scholar 

  7. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3):427–43. https://doi.org/10.1016/j.ejpb.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  8. Omolo CA, Kalhapure RS, Jadhav M, Rambharose S, Mocktar C, Ndesendo VM, et al. PEGylated oleic acid: a promising amphiphilic polymer for nano-antibiotic delivery. Eur J Pharm Biopharm. 2016;112:96–108. https://doi.org/10.1016/j.ejpb.2016.11.022.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ, Radovicmoreno AF, et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2(8):1696–702. https://doi.org/10.1021/nn800275r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Teerawanichpan P, Robertson AJ, Qiu X. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem Mol Biol. 2010;40(9):641–9. https://doi.org/10.1016/j.ibmb.2010.06.004.

    Article  CAS  PubMed  Google Scholar 

  11. Du Z, Mao X, Tai X, Wang G, Liu X. Preparation and properties of microemulsion detergent with linear medium chain fatty alcohols as oil phase. J Mol Liq. 2016;223:805–10. https://doi.org/10.1016/j.molliq.2016.09.011.

    Article  CAS  Google Scholar 

  12. Eccleston GM, Behan-Martin MK, Jones GR, Towns-Andrews E. Synchrotron X-ray investigations into the lamellar gel phase formed in pharmaceutical creams prepared with cetrimide and fatty alcohols. Int J Pharm. 2000;203(1–2):127–39. https://doi.org/10.1016/S0378-5173(00)00447-6.

    Article  CAS  PubMed  Google Scholar 

  13. Tian L, Gandra N, Singamaneni S. Monitoring controlled release of payload from gold nanocages using surface enhanced Raman scattering. ACS Nano. 2013;7(5):4252–60. https://doi.org/10.1021/nn400728t.

    Article  CAS  PubMed  Google Scholar 

  14. Uner M, Gönüllü U, Yener G, Altinkurt T. A new approach for preparing a controlled release ketoprofen tablets by using beeswax. Farmaco. 2005;60(1):27–31. https://doi.org/10.1016/j.farmac.2004.08.008.

    Article  CAS  PubMed  Google Scholar 

  15. Wong PC, Heng PW, Chan LW. Determination of solid state characteristics of spray-congealed ibuprofen solid lipid microparticles and their impact on sustaining drug release. Mol Pharm. 2015;12(5):1592–604. https://doi.org/10.1021/acs.molpharmaceut.5b00015.

    Article  CAS  PubMed  Google Scholar 

  16. Mi Y, Liu Y, Feng SS. Formulation of docetaxel by folic acid-conjugated-α-tocopheryl polyethylene glycol succinate 2000 (vitamin E TPGS) micelles for targeted and synergistic chemotherapy. Biomaterials. 2011;32(16):4058–66. https://doi.org/10.1016/j.biomaterials.2011.02.022.

    Article  CAS  PubMed  Google Scholar 

  17. Irmak S, Dunford NT, Milligan J. Policosanol contents of beeswax, sugar cane and wheat extracts. Food Chem. 2006;95(2):312–8. https://doi.org/10.1016/j.foodchem.2005.01.009.

    Article  CAS  Google Scholar 

  18. Jackson MA, Eller FJ. Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide. J Supercrit Fluids. 2006;37(2):173–7. https://doi.org/10.1016/j.supflu.2005.08.008.

    Article  CAS  Google Scholar 

  19. Kim SM, Chung HJ, Lim ST. Effect of various heat treatments on rancidity and some bioactive compounds of rice bran. J Cereal Sci. 2014;60(1):243–8. https://doi.org/10.1016/j.jcs.2014.04.001.

    Article  CAS  Google Scholar 

  20. Naeem M, Khan MMA, Moinuddin SMH. Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci Hortic. 2009;121(4):389–96. https://doi.org/10.1016/j.scienta.2009.02.030.

    Article  CAS  Google Scholar 

  21. Evans DA, Hill SW. Dietary supplement composition for blood lipid health. US; 2011.

  22. Gong J, Qin X, Yuan F, Hu M, Chen G, Fang K, et al. Efficacy and safety of sugarcane policosanol on dyslipidemia: a meta-analysis of randomized controlled trials. Mol Nutr Food Res. 2017;62:1700280. https://doi.org/10.1002/mnfr.201700280.

    Article  CAS  Google Scholar 

  23. Mcbride PT, Clark L, Krueger G. Evaluation of triacontanol-containing compounds as anti-inflammatory agents using guinea pig models. J Invest Dermatol. 1987;89(4):380–3. https://doi.org/10.1111/1523-1747.ep12471763.

    Article  CAS  PubMed  Google Scholar 

  24. Menéndez R, Más R, AMa A, Pérez Y, RMa G, Fernández J, et al. Antioxidant effects of D002 on the in vitro susceptibility of whole plasma in healthy volunteers. Arch Med Res. 2001;32(5):436–41. https://doi.org/10.1016/S0188-4409(01)00315-0.

    Article  PubMed  Google Scholar 

  25. Ravelo Y, Molina V, Carbajal D, Fernández L, Fernández JC, Arruzazabala ML, et al. Evaluation of anti-inflammatory and antinociceptive effects of D-002 (beeswax alcohols). J Nat Med. 2011;65(2):330–5. https://doi.org/10.1007/s11418-010-0496-4.

    Article  CAS  PubMed  Google Scholar 

  26. Fan X, Zhang R, Cheng H. Use of triacontanol in preparation of medicaments for treatment of cancers. US; 2011.

  27. Takada Y, Kageyama K, Yamada R, Onoyama Y, Nakajima T, Hosono M, et al. Correlation of DNA synthesis-inhibiting activity and the extent of transmembrane permeation into tumor cells by unsaturated or saturated fatty alcohols of graded chain-length upon hyperthermia. Oncol Rep. 2001;8(3):547–51. https://doi.org/10.3892/or.8.3.547.

    Article  CAS  PubMed  Google Scholar 

  28. Thippeswamy G, Sheela ML, Salimath BP. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-<kappa>B and its DNA binding activity. Eur J Pharmacol. 2008;588(2–3):141–50. https://doi.org/10.1016/j.ejphar.2008.04.027.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Li N, Qiu Z, Lu X, Fang M, Chen X, et al. Superior anti-neoplastic activities of triacontanol-PEG conjugate: synthesis, characterization and biological evaluations. Drug Deliv. 2018;25(1):1546–59. https://doi.org/10.1080/10717544.2018.1477864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grudén S, Sandelin M, Rasanen V, Micke P, Hedeland M, Axén N, et al. Antitumoral effect and reduced systemic toxicity in mice after intra-tumoral injection of an in vivo solidifying calcium sulfate formulation with docetaxel. Eur J Pharm Biopharm. 2017;114:186–93. https://doi.org/10.1016/j.ejpb.2017.01.018.

    Article  CAS  PubMed  Google Scholar 

  31. Tang X, Zhou S, Tao X, Wang J, Wang F, Liang Y. Targeted delivery of docetaxel via Pi-Pi stacking stabilized dendritic polymeric micelles for enhanced therapy of liver cancer. Mater Sci Eng C. 2017;75:1042–8. https://doi.org/10.1016/j.msec.2017.02.098.

    Article  CAS  Google Scholar 

  32. Zhang H, Wang K, Zhang P, He W, Song A, Luan Y. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel. Colloids Surf B: Biointerfaces. 2016;142:89–97. https://doi.org/10.1016/j.colsurfb.2016.02.045.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Chen L, Tan L, Zhao Q, Luo F, Wei Y, et al. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials. 2014;35(25):6972–85. https://doi.org/10.1016/j.biomaterials.2014.04.099.

    Article  CAS  PubMed  Google Scholar 

  34. Palominos MA, Vilches D, Bossel E, Soto-Arriaza MA. Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles. Colloids Surf B: Biointerfaces. 2016;148:30–40. https://doi.org/10.1016/j.colsurfb.2016.08.038.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release. 2016;230:64–72. https://doi.org/10.1016/j.jconrel.2016.03.035.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu Z, Li Y, Yang X, Pan W, Pan H. The reversion of anti-cancer drug antagonism of tamoxifen and docetaxel by the hyaluronic acid-decorated polymeric nanoparticles. Pharmacol Res. 2017;126:84–96. https://doi.org/10.1016/j.phrs.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Zhang L, Le Y, Chen J-F, Wang J, Yun J. Synergistic effect of PEGylated resveratrol on delivery of anticancer drugs. Int J Pharm. 2016;498(1):134–41. https://doi.org/10.1016/j.ijpharm.2015.12.016.

    Article  CAS  PubMed  Google Scholar 

  38. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40. https://doi.org/10.1016/j.chemphyslip.2016.10.005.

    Article  CAS  Google Scholar 

  39. Kim Y-M, Park S-C, Jang M-K. Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αvβ3 integrin-overexpressing tumor cells. Carbohydr Polym. 2017;174:1059–68. https://doi.org/10.1016/j.carbpol.2017.07.035.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Lu X, Liu Q, Dai Y, Zhu X, Wen Y, et al. Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. Eur J Pharm Sci. 2017;105:219–29. https://doi.org/10.1016/j.ejps.2017.05.038.

    Article  CAS  PubMed  Google Scholar 

  41. Yao H, Wang K, Wang Y, Wang S, Li J, Lou J, et al. Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials. 2015;37:345–52. https://doi.org/10.1016/j.biomaterials.2014.10.034.

    Article  CAS  PubMed  Google Scholar 

  42. Rodallec A, Benzekry S, Lacarelle B, Ciccolini J, Fanciullino R. Pharmacokinetics variability: why nanoparticles are not just magic-bullets in oncology. Crit Rev Oncol Hematol. 2018;129:1–12. https://doi.org/10.1016/j.critrevonc.2018.06.008.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81473272, No. 81503148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Lu or Ning Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Fitting curve of in vitro release data from DTX PMs for first-order kinetics model (PNG 50 kb)

High-resolution image (TIF 7888 kb)

Supplementary Table 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Fang, M., Yang, Y. et al. PEG-conjugated triacontanol micelles as docetaxel delivery systems for enhanced anti-cancer efficacy. Drug Deliv. and Transl. Res. 10, 122–135 (2020). https://doi.org/10.1007/s13346-019-00667-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00667-6

Keywords

Navigation