Skip to main content

Advertisement

Log in

Pluronic-F127 composite film loaded with erythromycin for wound application: formulation, physicomechanical and in vitro evaluations

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Composite film dressings composed of pluronic F127 (PL)–pectin (PC) and pluronic (PL) F127–gelatin (GL) were investigated as potential drug delivery system for wound healing. Composite films were solvent cast by blending PL with PC or GL in different ratios using glycerol (2.5%) as plasticizer. Erythromycin (ER) (0.1%) was incorporated in films as model hydrophobic antibiotic. The optimized composite films were characterized for physical appearance, morphology, mechanical profile, and thermal behavior. In addition, drug release, antibacterial activity, and cytocompatibility of the films were investigated to assess their potential as drug delivery system. The composite films exhibited excellent wound dressing characters in terms of appearance, stability, and mechanical profile. Moreover, ER-loaded composite films released ER in controlled manner, exhibited antibacterial activity against Staphylococcus aureus, and were non-toxic to human skin fibroblast. These findings demonstrate that these composite films hold the potential to be formulated as antibacterial wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127–36. https://doi.org/10.1016/j.ijpharm.2013.12.015.

    Article  CAS  PubMed  Google Scholar 

  2. Rezvanian M, Tan C-K, Ng S-F. Simvastatin-loaded lyophilized wafers as a potential dressing for chronic wounds. Drug Dev Ind Pharm. 2016;42(12):2055–62. https://doi.org/10.1080/03639045.2016.1195400.

    Article  CAS  PubMed  Google Scholar 

  3. Elsner JJ, Egozi D, Ullmann Y, Berdicevsky I, Shefy-Peleg A, Zilberman M. Novel biodegradable composite wound dressings with controlled release of antibiotics: results in a guinea pig burn model. Burns. 2011;37(5):896–904. https://doi.org/10.1016/j.burns.2011.02.010.

    Article  PubMed  Google Scholar 

  4. Pawar H, Tetteh J, Boateng J. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B: Biointerfaces. 2013;102:102–10. https://doi.org/10.1016/j.colsurfb.2012.08.014.

    Article  CAS  PubMed  Google Scholar 

  5. Rezvanian M, Amin MCIM, Ng S-F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr Polym. 2016;137:295–304. https://doi.org/10.1016/j.carbpol.2015.10.091.

    Article  CAS  PubMed  Google Scholar 

  6. Fuentes S, Dubo J, Barraza N, Gonzalez R, Veloso E. Hybrid chitosan–Pluronic F-127 films with BaTiO 3: Co nanoparticles: synthesis and properties. J Magn Magn Mater. 2015;377:65–9. https://doi.org/10.1016/j.jmmm.2014.10.050.

    Article  CAS  Google Scholar 

  7. Matthew JE, Nazario YL, Roberts SC, Bhatia SR. Effect of mammalian cell culture medium on the gelation properties of Pluronic® F127. Biomaterials. 2002;23(23):4615–9. https://doi.org/10.1016/S0142-9612(02)00208-9.

    Article  CAS  PubMed  Google Scholar 

  8. Pandit NK, Kisaka J. Loss of gelation ability of Pluronic® F127 in the presence of some salts. Int J Pharm. 1996;145(1–2):129–36. https://doi.org/10.1016/S0378-5173(96)04748-5.

    Article  CAS  Google Scholar 

  9. Kant V, Gopal A, Kumar D, Gopalkrishnan A, Pathak NN, Kurade NP, et al. Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochem. 2014;116(1):5–13. https://doi.org/10.1016/j.acthis.2013.04.010.

    Article  CAS  PubMed  Google Scholar 

  10. Nalbandian RM, Henry RL, Wilks HS. Artificial skin. II. Pluronic F-127 silver nitrate or silver lactate gel in the treatment of thermal burns. J Biomed Mater Res A. 1972;6(6):583–90. https://doi.org/10.1002/jbm.820060610.

    Article  CAS  Google Scholar 

  11. Rezvanain M, Ahmad N, Amin MCIM, Ng S-F. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol. 2017;97:131–40. https://doi.org/10.1016/j.ijbiomac.2016.12.079.

    Article  CAS  Google Scholar 

  12. Boateng J, Burgos-Amador R, Okeke O, Pawar H. Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromol. 2015;79:63–71. https://doi.org/10.1016/j.ijbiomac.2015.04.048.

    Article  CAS  PubMed  Google Scholar 

  13. Mishra R, Banthia A, Majeed A. Pectin based formulations for biomedical applications: a review. Asian J Pharma Clin Res. 2012;5(4):1–7.

    CAS  Google Scholar 

  14. de Souza RFB, de Souza FCB, Moraes ÂM. Polysaccharide-based membranes loaded with erythromycin for application as wound dressings. J Appl Polym Sci. 2016;133(22) https://doi.org/10.1002/app.43428.

  15. NCCLS. National Committee for clinical laboratory standards methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. NCCLS document M7-A5. Wayne, PA.2000.

  16. Pandey M, Mohamad N, Low W-L, Martin C, Amin MCIM. Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds. Drug Deliv Trans Res. 2017;7(1):89–99. https://doi.org/10.1007/s13346-016-0341-8.

    Article  CAS  Google Scholar 

  17. Boateng JS, Stevens HN, Eccleston GM, Auffret AD, Humphrey MJ, Matthews KH. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces. Drug Dev Ind Pharm. 2009;35(8):986–96. https://doi.org/10.1080/03639040902744704.

    Article  CAS  PubMed  Google Scholar 

  18. Y-L S, Wang J, Liu H-Z. FTIR spectroscopic investigation of effects of temperature and concentration on PEO–PPO–PEO block copolymer properties in aqueous solutions. Macromolecules. 2002;35(16):6426–31.

    Article  CAS  Google Scholar 

  19. Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm. 2013;441(1):181–91. https://doi.org/10.1016/j.ijpharm.2012.11.045.

    Article  CAS  PubMed  Google Scholar 

  20. Dong Z, Wang Q, Du Y. Alginate gelatin blend films and their properties for drug controlled release. J Membr Sci. 2006;280(1):37–44. https://doi.org/10.1016/j.memsci.2006.01.002.

    Article  CAS  Google Scholar 

  21. Peles Z, Zilberman M. Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties. Acta Biomater. 2012;8(1):209–17. https://doi.org/10.1016/j.actbio.2011.08.022.

    Article  CAS  PubMed  Google Scholar 

  22. He C, Kim SW, Lee DS. situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release. 2008;127(3):189–207. https://doi.org/10.1016/j.jconrel.2008.01.005.

    Article  CAS  PubMed  Google Scholar 

  23. Shidhaye SS, Saindane NS, Sutar S, Kadam V. Mucoadhesive bilayered patches for administration of sumatriptan succinate. AAPS PharmSciTech. 2008;9(3):909–16. https://doi.org/10.1208/s12249-008-9125-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pawde S, Deshmukh K. Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci. 2008;109(5):3431–7. https://doi.org/10.1002/app.28454.

    Article  CAS  Google Scholar 

  25. Espitia PJP, W-X D, de Jesús Avena-Bustillos R, NdFF S, TH MH. Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocoll. 2014;35:287–96. https://doi.org/10.1016/j.foodhyd.2013.06.005.

    Article  CAS  Google Scholar 

  26. Laine E, Kahela P, Rajala R, Heikkilä T, Saarnivaara K, Piippo I. Crystal forms and bioavailability of erythromycin. Int J Pharm. 1987;38(1):33–8. https://doi.org/10.1016/0378-5173(87)90094-9.

  27. Cabello SP, Takara EA, Marchese J, Ochoa NA. Influence of plasticizers in pectin films: microstructural changes. Mater Chem Phys. 2015;162:491–7. https://doi.org/10.1016/j.matchemphys.2015.06.019.

    Article  CAS  Google Scholar 

  28. Romić MD, Klarić MŠ, Lovrić J, Pepić I, Cetina-Čižmek B, Filipović-Grčić J, et al. Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: an innovative antimicrobial wound dressing. Eur J Pharm Biopharm. 2016;107:67–79. https://doi.org/10.1016/j.ejpb.2016.06.013.

    Article  CAS  PubMed  Google Scholar 

  29. Marian E, Tiţa B, Jurca T, Fuliaş A, Vicaş L, Tiţa D. Thermal behaviour of erythromycin-active substance and tablets. J Therm Anal Calorim. 2013;111(2):1025–31. https://doi.org/10.1007/s10973-012-2284-8.

    Article  CAS  Google Scholar 

  30. Ghaffari A, Navaee K, Oskoui M, Bayati K, Rafiee-Tehrani M. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm. 2007;67(1):175–86. https://doi.org/10.1016/j.ejpb.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  31. Kim YH, Kim DH, Hwang J, Kim HS, Lim GY, Ryoo ZY, et al. The inclusion of fetal bovine serum in gelatin/PCL electrospun scaffolds reduces short-term osmotic stress in HEK 293 cells caused by scaffold components. J Appl Polym Sci. 2013;129(6):3273–81. https://doi.org/10.1002/app.39052.

    Article  CAS  Google Scholar 

  32. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923. https://doi.org/10.1002/jps.21210.

    Article  CAS  PubMed  Google Scholar 

  33. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35. https://doi.org/10.1016/0378-5173(83)90064-9.

    Article  CAS  Google Scholar 

  34. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42. https://doi.org/10.1016/0168-3659(87)90035-6.

    Article  CAS  Google Scholar 

  35. Hawkyard CV, Koerner RJ. The use of erythromycin as a gastrointestinal prokinetic agent in adult critical care: benefits versus risks. J Antimicrob Chemother. 2007;59(3):347–58. https://doi.org/10.1093/jac/dkm451.

  36. Ahmad N, Mohd Amin MCI, Ismail I, Buang F. Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles. Expert opinion on drug delivery. 2016;13(5):621–32. https://doi.org/10.1517/17425247.2016.1160889.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG. Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. Mol Pharm. 2014;11(11):4130–42. https://doi.org/10.1021/mp5003015.

  38. ISO I. 10993–5: 2009. Biological evaluation of medical devices–part 5: tests for in vitro cytotoxicity. Geneva: International Organization for Standardization; 2009.

    Google Scholar 

Download references

Funding

The authors would like to thank Universiti Kebangsaan Malaysia (UKM) for the research grants (Grant no. GP-K016155) and facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiow-Fern Ng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, T., Rezvanian, M., Ahmad, N. et al. Pluronic-F127 composite film loaded with erythromycin for wound application: formulation, physicomechanical and in vitro evaluations. Drug Deliv. and Transl. Res. 9, 508–519 (2019). https://doi.org/10.1007/s13346-017-0450-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0450-z

Keywords

Navigation