Skip to main content

Advertisement

Log in

Nanocarriers for spleen targeting: anatomo-physiological considerations, formulation strategies and therapeutic potential

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

There are several clinical advantages of spleen targeting of nanocarriers. For example, enhanced splenic concentration of active agents could provide therapeutic benefits in spleen resident infections and hematological disorders including malaria, hairy cell leukemia, idiopathic thrombocytopenic purpura, and autoimmune hemolytic anemia. Furthermore, spleen delivery of immunosuppressant agents using splenotropic carriers may reduce the chances of allograft rejection in organ transplantation. Enhanced concentration of radiopharmaceuticals in the spleen may improve visualization of the organ, which could provide benefit in the diagnosis of splenic disorders. Unique anatomical features of the spleen including specialized microvasculature environment and slow blood circulation rate enable it an ideal drug delivery site. Because there is a difference in blood flow between spleen and liver, splenic delivery is inversely proportional to the hepatic uptake. It is therefore desirable engineering of nanocarriers, which, upon intravenous administration, can avoid uptake by hepatic Kupffer cells to enhance splenic localization. Stealth and non-spherical nanocarriers have shown enhanced splenic delivery of active agents by avoiding hepatic uptake. The present review details the research in the field of splenotropy. Formulation strategies to design splenotropic drug delivery systems are discussed. The review also highlights the clinical relevance of spleen targeting of nanocarriers and application in diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immune deficiency syndrome

AR:

Aspect ratio

DOPC:

Dioleoylphosphatidylcholine

DOPE:

Dioleoylphosphatidylethanolamine

GMS:

Glyceryl monostearate

MSN:

Mesoporous silica nanoparticles

PEG-PE:

Dioleoyl-N-(monomethoxy polyethyleneglycol succinyl)-phosphatidylethanolamine

PLGA:

Poly(lactic-co-glycolic acid)

RBC:

Red blood cells

RES:

Reticuloendothelial system

SCNP:

4-Sulfated N-acetyl galactosamine-modified chitosan nanoparticles

SLN:

Solid lipid nanoparticles

References

  1. Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity. 2013;806–18.

  2. Wijburg OL, Heemskerk MH, Boog CJ, Van Rooijen N. Role of spleen macrophages in innate and acquired immune responses against mouse hepatitis virus strain A59. Immunology. 1997;92:252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Melo RC, Brener Z. Tissue tropism of different Trypanosoma cruzi strains. J Parasitol. 1978;64:475–82.

    Article  CAS  PubMed  Google Scholar 

  4. Imani Fooladi AA, Hosseini MJ, Azizi T. Splenic tuberculosis: a case report. Int J Infect Dis. 2009;273–5.

  5. Gratton S, Cheynier R, Dumaurier MJ, Oksenhendler E, Wain-Hobson S. Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc Natl Acad Sci U S A. 2000;97:14566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grilló M-J, Blasco J, Gorvel J, Moriyón I, Moreno E. What have we learned from brucellosis in the mouse model?. Vet Res. 2012;29–64.

  7. Neuenhahn M, Busch DH. Unique functions of splenic CD8alpha + dendritic cells during infection with intracellular pathogens. Immunol Lett. 2007;114:66–72.

    Article  CAS  PubMed  Google Scholar 

  8. Rizzoli A, Rosà R, Mantelli B, Pecchioli E, Hauffe H, Tagliapietra V, et al. Ixodes ricinus, transmitted diseases and reservoirs. Parassitologia. 2004;46:119–22.

    CAS  PubMed  Google Scholar 

  9. Foster N, Elsheikha HM. The immune response to parasitic helminths of veterinary importance and its potential manipulation for future vaccine control strategies. Parasitol Res. 2012;1587–99.

  10. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    CAS  PubMed  Google Scholar 

  11. Moghimi SM. Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Adv Drug Deliv Rev. 1995;103–15.

  12. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991;1068:133–41.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Z, Sun C, Yin Z, Zhou F, Ge L, Liu X, et al. Comparison of two kinds of nanomedicine for targeted gene therapy: premodified or postmodified gene delivery systems. Int J Nanomedicine. 2012;7:2019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lainé A-L, Gravier J, Henry M, Sancey L, Béjaud J, Pancani E, et al. Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring. J Control Release. 2014;188:1–8.

    Article  PubMed  Google Scholar 

  16. Kommareddy S, Amiji M. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci. 2007;96:397–407.

    Article  CAS  PubMed  Google Scholar 

  17. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–66.

    Article  CAS  PubMed  Google Scholar 

  18. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25:1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006;103:4930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm. 1998;46:255–63.

    Article  CAS  PubMed  Google Scholar 

  21. Fang C, Shi B, Pei Y-Y, Hong M-H, Wu J, Chen H-Z. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci. 2006;27:27–36.

    Article  CAS  PubMed  Google Scholar 

  22. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26:244–9.

    Article  CAS  PubMed  Google Scholar 

  23. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm Am Chem Soc. 2008;5:505–15.

    Article  CAS  Google Scholar 

  24. Peracchia MT, Fattal E, Desmaële D, Besnard M, Noël JP, Gomis JM, et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 1999;60:121–8.

    Article  CAS  PubMed  Google Scholar 

  25. Devarajan PV, Jindal AB, Patil RR, Mulla F, Gaikwad RV, Samad A. Particle shape: a new design parameter for passive targeting in splenotropic drug delivery. J Pharm Sci. 2010;99:2576–81.

    Article  CAS  PubMed  Google Scholar 

  26. Bishop MB, Lansing LS. The spleen: a correlative overview of normal and pathologic anatomy. Hum Pathol. 1982;13:334–42.

    Article  CAS  PubMed  Google Scholar 

  27. Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;152–63.

  28. Steiniger B, Barth P. Microanatomy and function of the spleen. Adv Anat Embryol Cell Biol. 2000;151:III–IX, 1–101.

  29. Groom AC, Schmidt EE, MacDonald IC. Microcirculatory pathways and blood flow in spleen: new insights from washout kinetics, corrosion casts, and quantitative intravital videomicroscopy. Scanning Microsc. 1991;5:159–73. discussion 173–4.

    CAS  PubMed  Google Scholar 

  30. Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ, Ameisen JC, et al. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie. 1998;80:173–95.

    Article  CAS  PubMed  Google Scholar 

  31. Schnitzer B, Sodeman TM, Mead ML, Contacos PG. An ultrastructural study of the red pulp of the spleen in malaria. Blood. 1973;41:207–18.

    CAS  PubMed  Google Scholar 

  32. Crosby WH. Splenic remodeling of red cell surfaces. Blood. 1977;50:643–5.

    CAS  PubMed  Google Scholar 

  33. McGaha TL, Chen Y, Ravishankar B, Van Rooijen N, Karlsson MCI. Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood. 2011;117:5403–12.

    Article  CAS  PubMed  Google Scholar 

  34. Cyster JG, Goodnow CC. Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J Exp Med. 1995;182:581–6.

    Article  CAS  PubMed  Google Scholar 

  35. Reinhart WH, Chien S. Roles of cell geometry and cellular viscosity in red cell passage through narrow pores. Am J Physiol. 1985;248:C473–9.

    CAS  PubMed  Google Scholar 

  36. Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34:455–65.

    Article  PubMed  Google Scholar 

  37. Blue J, Weiss L. Vascular pathways in nonsinusal red pulp—an electron microscope study of the cat spleen. Am J Anat. 1981;161:135–68.

    Article  CAS  PubMed  Google Scholar 

  38. van K JHJM. Histology of the spleen: structure and cellular distribution in the normal spleen. Curr Diagn Pathol. 1997;4:100–5.

    Article  Google Scholar 

  39. Chellat F, Merhi Y, Moreau A, Yahia L. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials. 2005;26:7260–75.

    Article  CAS  PubMed  Google Scholar 

  40. Patil RR, Gaikwad RV, Samad A, Devarajan PV. Role of lipids in enhancing splenic uptake of polymer-lipid (LIPOMER) nanoparticles. J Biomed Nanotechnol. 2008;4:359–66.

    Article  CAS  Google Scholar 

  41. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2012;246–55.

  42. Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating?. Adv Drug Deliv Rev. 1995;141–55.

  43. Ishihara A, Yamauchi M, Tsuchiya T, Mimura Y, Tomoda Y, Katagiri A, et al. A novel liposome surface modification agent that prolongs blood circulation and retains surface ligand reactivity. J Biomater Sci Polym Ed. 2012;23:2055–68.

    CAS  PubMed  Google Scholar 

  44. Saw PE, Park J, Lee E, Ahn S, Lee J, Kim H, et al. Effect of PEG pairing on the efficiency of cancer-targeting liposomes. Theranostics. 2015;5:746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He X, Li L, Su H, Zhou D, Song H, Wang L, et al. Poly(ethylene glycol)-block-poly(ε-caprolactone)-and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery. Int J Nanomedicine. 2015;10:1791–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Han X, Li Z, Sun J, Luo C, Li L, Liu Y, et al. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. J Control Release. 2015;197:29–40.

    Article  CAS  PubMed  Google Scholar 

  47. Moghimi SM, Porter CJ, Muir IS, Illum L, Davis SS. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun. 1991;177:861–6.

    Article  CAS  PubMed  Google Scholar 

  48. Sou K, Inenaga S, Takeoka S, Tsuchida E. Loading of curcumin into macrophages using lipid-based nanoparticles. Int J Pharm. 2008;352:287–93.

    Article  CAS  PubMed  Google Scholar 

  49. Moghimi SM, Hedeman H, Muir IS, Illum L, Davis SS. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim Biophys Acta. 1993;1157:233–40.

    Article  CAS  PubMed  Google Scholar 

  50. Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta. 1991;1062:142–8.

    Article  CAS  PubMed  Google Scholar 

  51. Maldiney T, Richard C, Seguin J, Wattier N, Bessodes M, Scherman D. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano. 2011;5:854–62.

    Article  CAS  PubMed  Google Scholar 

  52. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;31–48.

  53. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;90–9.

  54. Sykes EA, Chen J, Zheng G, Chan WCW. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8:5696–706.

    Article  CAS  PubMed  Google Scholar 

  55. Shilo M, Sharon A, Baranes K, Motiei M, Lellouche J-PM, Popovtzer R. The effect of nanoparticle size on the probability to cross the blood–brain barrier: an in-vitro endothelial cell model. J Nanobiotechnol. 2015;13:19.

    Article  Google Scholar 

  56. Youshia J, Lamprecht A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin Drug Deliv. 2015;1–14.

  57. Mathaes R, Winter G, Besheer A, Engert J. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers. Int J Pharm. 2014;465:159–64.

    Article  CAS  PubMed  Google Scholar 

  58. Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci. 2013;110:17247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jansch M, Jindal AB, Sharmila BM, Samad A, Devarajan PV, Müller RH. Influence of particle shape on plasma protein adsorption and macrophage uptake. Pharmazie. 2013;68:27–33.

    CAS  PubMed  Google Scholar 

  60. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31:438–48.

    Article  CAS  PubMed  Google Scholar 

  61. Doshi N, Mitragotri S. Needle-shaped polymeric particles induce transient disruption of cell membranes. J R Soc Interface. 2010;7(4):S403–10.

    Article  CAS  PubMed  Google Scholar 

  62. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.

    Article  CAS  PubMed  Google Scholar 

  63. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31:7606–19.

    Article  CAS  PubMed  Google Scholar 

  64. Alemdaroglu FE, Alemdaroglu NC, Langguth P, Herrmann A. Cellular uptake of DNA block copolymer micelles with different shapes. Macromol Rapid Commun. 2008;29:326–9.

    Article  CAS  Google Scholar 

  65. Chen J, Kozlovskaya V, Goins A, Campos-Gomez J, Saeed M, Kharlampieva E. Biocompatible shaped particles from dried multilayer polymer capsules. Biomacromol Am Chem Soc. 2013;14:3830–41.

    Article  CAS  Google Scholar 

  66. Arnida, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft für Pharm Verfahrenstechnik eV. 2011;77:417–23.

    CAS  Google Scholar 

  67. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–20.

    Article  CAS  PubMed  Google Scholar 

  68. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oltra NS, Swift J, Mahmud A, Rajagopal K, Loverde SM, Discher DE. Filomicelles in nanomedicine—from flexible, fragmentable, and ligand-targetable drug carrier designs to combination therapy for brain tumors. J Mater Chem B R Soc Chem. 2013;1:5177.

    Article  CAS  Google Scholar 

  70. Karagoz B, Esser L, Duong HT, Basuki JS, Boyer C, Davis TP. Polymerization-induced self-assembly (PISA)—control over the morphology of nanoparticles for drug delivery applications. Polym Chem R Soc Chem. 2014;5:350–5.

    Article  CAS  Google Scholar 

  71. Chauhan VP, Popović Z, Chen O, Cui J, Fukumura D, Bawendi MG, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed. 2011;50:11417–20.

    Article  CAS  Google Scholar 

  72. Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine. 2013;9:686–93.

    CAS  PubMed  Google Scholar 

  73. Linlin Li, Tianlong Liu, Changhui Fu, Longfei Tan, Xianwei Meng HL. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine. 2015;1915–24.

  74. Litzinger DC, Huang L. Amphipathic poly(ethylene glycol) 5000-stabilized dioleoylphosphatidylethanolamine liposomes accumulate in spleen. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1992;1127:249–54.

    Article  CAS  Google Scholar 

  75. Moghimi SM, Patel HM. Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett. 1988;233:143–7.

    Article  CAS  PubMed  Google Scholar 

  76. Moghimi SM, Patel HM. Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes. Biochim Biophys Acta. 1989;984:384–7.

    Article  CAS  PubMed  Google Scholar 

  77. De Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci U S A. 2009;106:3654–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yu W, Liu C, Liu Y, Zhang N, Xu W. Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res. 2010;27:1584–96.

    Article  CAS  PubMed  Google Scholar 

  79. Soni MP, Shelkar N, Gaikwad RV, Vanage GR, Samad A, Devarajan PV. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis. J Pharm Bioallied Sci. 2014;6:22–30.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li S, Ji Z, Zou M, Nie X, Shi Y, Cheng G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech. 2011;12:1011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ye J, Wang Q, Zhou X, Zhang N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm. 2008;352:273–9.

    Article  CAS  PubMed  Google Scholar 

  82. Nagarsekar KS, Galdhar CN, Gaikwad RV, Samad A, Devarajan PV. Amphotericin B LIPOMER for enhanced splenic delivery. Drug Deliv Lett. 2016;4.

  83. Demoy M, Andreux JP, Weingarten C, Gouritin B, Guilloux V, Couvreur P. Spleen capture of nanoparticles: influence of animal species and surface characteristics. Pharm Res. 1999;16:37–41.

    Article  CAS  PubMed  Google Scholar 

  84. Chen K-H, Lundy DJ, Toh EK-W, Chen C-H, Shih C, Chen P, et al. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale. 2015;7:15863–72.

    Article  CAS  PubMed  Google Scholar 

  85. Tripathi P, Dwivedi P, Khatik R, Jaiswal AK, Dube A, Shukla P, et al. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: a dual strategy for effective management of leishmaniasis. Colloids Surf B: Biointerfaces. 2015;136:150–9.

    Article  CAS  PubMed  Google Scholar 

  86. Yu S, Gao X, Baigude H, Hai X, Zhang R, Gao X, et al. Inorganic nanovehicle for potential targeted drug delivery to tumor cells, tumor optical imaging. ACS Appl Mater Interfaces. 2015;7:5089–96.

    Article  CAS  PubMed  Google Scholar 

  87. Ojea-Jiménez I, Comenge J, García-Fernández L, Megson ZA, Casals E, Puntes VF. Engineered inorganic nanoparticles for drug delivery applications. Curr Drug Metab. 2013;14:518–30.

    Article  PubMed  Google Scholar 

  88. Lülf H, Bertucci A, Septiadi D, Corradini R, De Cola L. Multifunctional inorganic nanocontainers for DNA and drug delivery into living cells. Chemistry. 2014;20:10900–4.

    Article  PubMed  Google Scholar 

  89. Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, et al. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale. 2015;7:625–36.

    Article  CAS  PubMed  Google Scholar 

  90. Carruthers VB, Cotter PA, Kumamoto CA. Microbial pathogenesis: mechanisms of infectious disease. Cell Host Microbe. 2007;214–9.

  91. Unanue ER, Allen PM. The basis for the immunoregulatory role of macrophages and other accessory cells. Science. 1987;236:551–7.

    Article  CAS  PubMed  Google Scholar 

  92. Morilla MJ, Montanari JA, Prieto MJ, Lopez MO, Petray PB, Romero EL. Intravenous liposomal benznidazole as trypanocidal agent: increasing drug delivery to liver is not enough. Int J Pharm. 2004;278:311–8.

    Article  CAS  PubMed  Google Scholar 

  93. Morilla MJ, Montanari J, Frank F, Malchiodi E, Corral R, Petray PRE. Etanidazole in pH-sensitive liposomes: design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity. J Control Release. 2005;103:199–207.

    Article  Google Scholar 

  94. Rogers NJ, Lechler RI. Allorecognition. Am J Transplant. 2001;1:97–102.

    Article  CAS  PubMed  Google Scholar 

  95. Dalloul A. B-cell-mediated strategies to fight chronic allograft rejection. Front Immunol. 2013;4:444.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lakkis FG, Arakelov A, Konieczny BT, Inoue Y. Immunologic “ignorance” of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med. 2000;6:686–8.

    Article  CAS  PubMed  Google Scholar 

  97. Borges O, Borchard G, Verhoef JC, De Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm. 2005;299:155–66.

    Article  CAS  PubMed  Google Scholar 

  98. Eldridge JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun. 1991;59:2978–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev. 2005;391–410.

  100. Boraschi D, Italiani P. From antigen delivery system to adjuvanticy: the board application of nanoparticles in vaccinology. Vaccines. 2015;3:930–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Aichele P, Zinke J, Grode L, Schwendener RA, Kaufmann SHE, Seiler P. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J Immunol. 2003;171:1148–55.

    Article  CAS  PubMed  Google Scholar 

  102. Lavergne JMLL-DF. Lmmunobiological consequences of splenectomy: a review. J Surg Res. 1986;40:85–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil B. Jindal.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, A.B. Nanocarriers for spleen targeting: anatomo-physiological considerations, formulation strategies and therapeutic potential. Drug Deliv. and Transl. Res. 6, 473–485 (2016). https://doi.org/10.1007/s13346-016-0304-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0304-0

Keywords

Navigation