Skip to main content

Advertisement

Log in

Enhanced osseous integration of human trabecular allografts following surface modification with bioactive lipids

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 May 2016

Abstract

In this study, we used extracellular matrix (ECM) gels and human bone allograft as matrix vehicles to deliver the sphingolipid growth factor FTY720 to rodent models of tibial fracture and a critical-sized cranial defect. We show that FTY720 released from injectable ECM gels may accelerate callous formation and resolution and bone volume in a mouse tibial fracture model. We then show that FTY720 binds directly to human trabecular allograft bone and releases over 1 week in vitro. Rat critical-sized cranial defects treated with FTY720-coated grafts show increases in vascularization and bone deposition, with histological and micro-computed topography (microCT) evidence of enhanced bone formation within the graft and defect void. Immunohistochemical analysis suggests that osteogenesis within FTY720-coated grafts is associated with reduced CD68+ macrophage infiltration and recruitment of CD29+ bone progenitor cells. Matrix binding of FTY720 thus represents a promising and robust bone regeneration strategy with potential clinical translatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jacobs J, Andersson G, Bell J-E, Weinstein S, Dormans J, Gnatz S, Lane N, Puzas J, St. Clair EW, Yelin E. The burden of musculoskeletal diseases in the United States. Am Acad Orthop Surg. 2008.

  2. Jahangir A, Nunley R, Mehta S, Sharan A. Bone-graft substitutes in orthopaedic surgery, in AAOS Now. Am Acad Orthop Surg. 2008.

  3. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36 Suppl 3:S20–7.

    Article  PubMed  Google Scholar 

  4. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg (Br). 1989;71(4):677–80.

    CAS  Google Scholar 

  5. Delloye C et al. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg (Br). 2007;89(5):574–9.

    Article  CAS  Google Scholar 

  6. Wheeler DL, Enneking WF. Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res. 2005;435:36–42.

    Article  PubMed  Google Scholar 

  7. Wu N et al. Health care utilization and costs in patients experiencing bone fracture nonunion. Value Health. 2012;15(4):A66.

    Article  Google Scholar 

  8. Wieghaus KA et al. Small molecule inducers of angiogenesis for tissue engineering. Tissue Eng. 2006;12(7):1903–13.

    Article  CAS  PubMed  Google Scholar 

  9. Awojoodu AO et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc Natl Acad Sci U S A. 2013;110(34):13785–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Das A et al. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials. 2013;34(38):9853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Das A et al. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect. J Biomed Mater Res A. 2014;102(4):1210–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang C et al. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation. Cell Tissue Res. 2012;347(3):553–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sefcik LS et al. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials. 2008;29(19):2869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sefcik LS et al. Selective activation of sphingosine 1-phosphate receptors 1 and 3 promotes local microvascular network growth. Tissue Eng A. 2011;17(5–6):617–29.

    Article  CAS  Google Scholar 

  15. Brinkmann V et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010;9(11):883–97.

    Article  CAS  PubMed  Google Scholar 

  16. Petrie Aronin CE et al. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue Eng A. 2010;16(6):1801–9.

    Article  CAS  Google Scholar 

  17. Semete B et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine. 2010;6(5):662–71.

    CAS  PubMed  Google Scholar 

  18. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.

    Article  PubMed  Google Scholar 

  19. Ji W et al. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials. 2012;33(28):6604–14.

    Article  CAS  PubMed  Google Scholar 

  20. Lu JM et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  22. Dennis SC et al. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng B Rev. 2014;21(3):247–66.

    Article  Google Scholar 

  23. Benders KEM et al. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013;31(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  24. Singelyn JM et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009;30(29):5409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sreejit P, Verma RS. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells. Stem Cell Rev Rep. 2013;9(2):158–71.

    Article  CAS  Google Scholar 

  26. Neal RA et al. Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration. J Biomed Mater Res A. 2012;100A(2):406–23.

    Article  CAS  Google Scholar 

  27. Hastings CL et al. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev. 2014;84:85–106.

    Article  PubMed  Google Scholar 

  28. Tang PH et al. Effective and sustained delivery of hydrophobic retinoids to photoreceptors. Invest Ophthalmol Vis Sci. 2010;51(11):5958–64.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev. 2003;55(12):1631–49.

    Article  CAS  PubMed  Google Scholar 

  30. Butcher JT et al. Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography. Dev Dyn. 2007;236(3):802–9.

    Article  PubMed  Google Scholar 

  31. Savai R et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia. 2009;11(1):48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das A, et al. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair. PLos One. 2014;9(7).

  33. Bax BE, Wozney JM, Ashhurst DE. Bone morphogenetic protein-2 increases the rate of callus formation after fracture of the rabbit tibia. Calcif Tissue Int. 1999;65(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  34. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg (Br). 1978;60-B(2):150–62.

    CAS  Google Scholar 

  35. Heilmann A et al. Systemic treatment with the sphingosine-1-phosphate analog FTY720 does not improve fracture healing in mice. J Orthop Res. 2013;31(11):1845–50.

    CAS  PubMed  Google Scholar 

  36. Sato C et al. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun. 2012;423(1):200–5.

    Article  CAS  PubMed  Google Scholar 

  37. Bertran CA, Bertazzo S, Faria LP. Surface charge of hydroxyapatite and bone mineral. Bioceramics Vol 19, Pts 1 and 2, 2007. 330–332: p. 713–716.

  38. Swain J et al. Study of aqueous phase aggregation of FTY720 (fingolimod hydrochloride) and its effect on DMPC liposomes using fluorescent molecular probes. Phys Chem Chem Phys. 2013;15(41):17962–70.

    Article  CAS  PubMed  Google Scholar 

  39. Eriksson C, Jones S. Bone-mineral and surface-charge. Clin Orthop Relat Res. 1977;128:351–3.

    PubMed  Google Scholar 

  40. Kitagawa S, Sawada M, Hirata H. Fluorescence analysis with diphenylhexatriene and its ionic derivatives of the fluidity of liposomes constituted from stratum-corneum lipids - contribution of each lipid component and effects of long-chain unsaturated fatty-acids. Int J Pharm. 1993;98(1–3):203–8.

    Article  CAS  Google Scholar 

  41. Shechter R, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. Plos Med. 2009;6(7).

  42. Zhang XP et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res. 2005;20(12):2124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu HY et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials. 2009;30(4):508–17.

    Article  CAS  PubMed  Google Scholar 

  44. Golden JD et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. J Bone Joint Surg Am Vol. 2008;90A(5):1168–9.

    Google Scholar 

  45. Koffler J et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci U S A. 2011;108(36):14789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mah J et al. The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects. Eur J Orthod. 2004;26(5):475–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 DE019935 and NIH R01 AR056445.

Conflict of interest

T.W., J.K., C.H., A.D., R.O., and E.B. declare that they have no conflict of interest. M.P.F. is an employee of LifeNet Health.

Ethical standards and animal care

Experiments comply with the current laws of the USA. All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Botchwey.

Additional information

Tiffany Wang and Jack Krieger contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Krieger, J., Huang, C. et al. Enhanced osseous integration of human trabecular allografts following surface modification with bioactive lipids. Drug Deliv. and Transl. Res. 6, 96–104 (2016). https://doi.org/10.1007/s13346-015-0244-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0244-0

Keywords

Navigation