Skip to main content
Log in

Stochastic Failure Analysis of Reinforced Thermoplastic Pipes Under Axial Loading and Internal Pressure

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

This study explores how parametric uncertainties in the production affect failure tensile loads of reinforced thermoplastic pipes (RTPs) under combined loading conditions. The stress distributions in RTPs are examined with three-dimensional (3D) elasticity theory, and the analytical micromechanics of composites are evaluated. To evaluate the failure mechanisms for RTPs, 3D Hashin—Yeh failure criteria are combined with the damage evolution model to establish a progressive failure model. The theoretical model has been validated through numerical simulations and axial tensile tests data. To analyze how randomness of relevant parameters affects the first-ply failure (FPF) tensile load and final failure (FF) tensile load in RTPs, many samples are produced with the Monte—Carlo approach. The stochastic analysis results are statistically evaluated through the Weibull probability density distribution function. For the randomness of production parameters, the failure tensile load of RTPs fluctuates near the mean value. As the ply number at the reinforced layer increases, the dispersion of failure tensile load increases, with a high probability that the FPF tensile load of RTPs is lower than the mean value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM, 2000. Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Tube.

  • Bai, Q. and Bai, Y., 2014. 27-Burst strength of RTP pipeline, in: Bai, Q. and Bai, Y. (eds.), Subsea Pipeline Design, Analysis, and Installation, Gulf Professional Publishing, Tokyo, pp. 611–620.

    Chapter  Google Scholar 

  • Bai, Y., Liu, T., Cheng, P., Yuan, S., Yao, D.Z. and Tang, G., 2016. Buckling stability of steel strip reinforced thermoplastic pipe subjected to external pressure, Composite Structures, 152, 528–537.

    Article  Google Scholar 

  • Bai, Y., Tang, J.D., Xu, W.P., Cao, Y. and Wang, R.S., 2015. Collapse of reinforced thermoplastic pipe (RTP) under combined external pressure and bending moment, Ocean Engineering, 94, 10–18.

    Article  Google Scholar 

  • Bai, Y., Xu, W.P., Cheng, P., Wang, N.S. and Ruan, W.D., 2014. Behaviour of reinforced thermoplastic pipe (RTP) under combined external pressure and tension, Ships and Offshore Structures, 9(4), 464–474.

    Article  Google Scholar 

  • Bakaiyan, H., Hosseini, H. and Ameri, E., 2009. Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations, Composite Structures, 88(4), 532–541.

    Article  Google Scholar 

  • Bakar, M.A.A., Mustaffa, Z., Idris, N.N. and Ben Seghier, M.E.A., 2021. Experimental program on the burst capacity of reinforced thermoplastic pipe (RTP) under impact of quasi-static lateral load, Engineering Failure Analysis, 128, 105626.

    Article  Google Scholar 

  • Betts, D., Sadeghian, P. and Fam, A., 2019. Investigation of the stress-strain constitutive behavior of ±55° filament wound GFRP pipes in compression and tension, Composites Part B: Engineering, 172, 243–252.

    Article  Google Scholar 

  • Chen, Y., Fu, K.K., Hou, S.J., Han, X. and Ye, L., 2018. Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings, Composites Part B: Engineering, 142, 159–170.

    Article  Google Scholar 

  • Chen, Y., Hou, S.J., Fu, K.K., Han, X. and Ye, L., 2017. Low-velocity impact response of composite sandwich structures: modelling and experiment, Composite Structures, 168, 322–334.

    Article  Google Scholar 

  • Davydenko, V.I., 1970. Strength and deformability of reinforced polymers in tension normal to the fibers, Polymer Mechanics, 6(4), 595–599.

    Article  Google Scholar 

  • Gemi, L., 2018. Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study, Composites Part B: Engineering, 153, 217–232.

    Article  Google Scholar 

  • Hashin, Z., 1981. Fatigue failure criteria for unidirectional fiber composites, Journal of Applied Mechanics, 48(4), 846–852.

    Article  Google Scholar 

  • Hashin, Z. and Rotem, A., 1973. A fatigue failure criterion for fiber reinforced materials, Journal of Composite Materials, 7(4), 448–464.

    Article  Google Scholar 

  • Hastie, J.C., Guz, I.A. and Kashtalyan, M., 2019. Effects of thermal gradient on failure of a thermoplastic composite pipe (TCP) riser leg, International Journal of Pressure Vessels and Piping, 172, 90–99.

    Article  Google Scholar 

  • He, W.T., Yao, L., Meng, X.J., Sun, G.Y., Xie, D. and Liu, J.X., 2019. Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets, Thin-Walled Structures, 137, 411–432.

    Article  Google Scholar 

  • Lei, Z.D., Yang, S.X., and Xie, S.Z., 1988. Soil Water Dynamics. Tsinghua University Press, Beijing. (in Chinese)

    Google Scholar 

  • Liu, W.C. and Wang, S.Q., 2019a. Analytical prediction of buckling collapse for reinforced thermoplastic pipes based on hoop stress analysis of crushed rings, Ocean Engineering, 187, 106203.

    Article  Google Scholar 

  • Liu, W.C. and Wang, S.Q., 2019b. An elastic stability-based method to predict the homogenized hoop elastic moduli of reinforced thermoplastic pipes (RTPs), Composite Structures, 230, 111560.

    Article  Google Scholar 

  • Liu, W.C., Wang, S.Q., Bu, J.R. and Ding, X.D., 2021a. An analytical model for the progressive failure prediction of reinforced thermoplastic pipes under axial compression, Polymer Composites, 42(6), 3011–3024.

    Article  Google Scholar 

  • Liu, W.C., Wang, S.Q., Wang, S. and Ci, S.Z., 2021b. Theoretical and experimental study on the continuum damage mechanical (CDM) behavior of RTPs under axial tension, Ocean Engineering, 222, 108623.

    Article  Google Scholar 

  • Lou, M., Wang, Y.Y., Tong, B. and Wang, S., 2020. Effect of temperature on tensile properties of reinforced thermoplastic pipes, Composite Structures, 241, 112119.

    Article  Google Scholar 

  • Maimí, P., Camanho, P.P., Mayugo, J.A. and Dávila, C.G., 2007. A continuum damage model for composite laminates: Part I—Constitutive model, Mechanics of Materials, 39(10), 897–908.

    Article  Google Scholar 

  • Rafiee, R., 2013. Experimental and theoretical investigations on the failure of filament wound GRP pipes, Composites Part B: Engineering, 45(1), 257–267.

    Article  Google Scholar 

  • Rafiee, R. and Amini, A., 2015. Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes, Computational Materials Science, 96, 579–588.

    Article  Google Scholar 

  • Rafiee, R., Fakoor, M. and Hesamsadat, H., 2015a. The influence of production inconsistencies on the functional failure of GRP pipes, Steel and Composite Structures, 19(6), 1369–1379.

    Article  Google Scholar 

  • Rafiee, R., Reshadi, F. and Eidi, S., 2015b. Stochastic analysis of functional failure pressures in glass fiber reinforced polyester pipes, Materials & Design, 67, 422–427.

    Article  Google Scholar 

  • Rafiee, R. and Torabi, M.A., 2018. Stochastic prediction of burst pressure in composite pressure vessels, Composite Structures, 185, 573–583.

    Article  Google Scholar 

  • Reis, J.M.L., Martins, F.D.F. and da Costa Mattos, H.S., 2017. Influence of ageing in the failure pressure of a GFRP pipe used in oil industry, Engineering Failure Analysis, 71, 120–130.

    Article  Google Scholar 

  • Shen, G.L., Hu, G.K. and Liu, B., 2013. Mechanics of Composite Materials, Second ed., Tsinghua University Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Sun, X.S., Chen, Y., Tan, V.B.C., Jaiman, R.K. and Tay, T.E., 2014a. Homogenization and stress analysis of multilayered composite offshore production risers, Journal of Applied Mechanics, 81(3), 031003.

    Article  Google Scholar 

  • Sun, X.S., Tan, V.B.C., Chen, Y., Tan, L.B., Jaiman, R.K. and Tay, T. E., 2014b. Stress analysis of multi-layered hollow anisotropic composite cylindrical structures using the homogenization method, Acta Mechanica, 225(6), 1649–1672.

    Article  MathSciNet  Google Scholar 

  • Toh, W., Tan, L.B., Tse, K.M., Giam, A., Raju, K., Lee, H.P. and Tan, V.B.C., 2018. Material characterization of filament-wound composite pipes, Composite Structures, 206, 474–483.

    Article  Google Scholar 

  • Wang, Y.Y., Lou, M., Dong, W.Y. and Wang, Y., 2021a. Predicting failure pressure of reinforced thermoplastic pipes based on theoretical analysis and experiment, Composite Structures, 270, 114039.

    Article  Google Scholar 

  • Wang, Y.Y., Lou, M., Tong, B. and Wang, S., 2020. Mechanical properties study of reinforced thermoplastic pipes under a tensile load, China Ocean Engineering, 34(6), 806–816.

    Article  Google Scholar 

  • Wang, Y.Y., Lou, M., Zeng, X., Dong, W.Y. and Wang, S., 2021b. Burst capacity of reinforced thermoplastic pipes based on progressive failure criterion, Ocean Engineering, 234, 109001.

    Article  Google Scholar 

  • Xin, H.H., Mosallam, A., Liu, Y.Q., Veljkovic, M. and He, J., 2019. Mechanical characterization of a unidirectional pultruded composite lamina using micromechanics and numerical homogenization, Construction and Building Materials, 216, 101–118.

    Article  Google Scholar 

  • Xing, J.Z., Geng, P. and Yang, T., 2015. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure, Composite Structures, 131, 868–877.

    Article  Google Scholar 

  • Yeh, H.Y. and Chern, C., 1998. The Yeh-Stratton criterion for stress concentrations in fiber-reinforced composite materials, Journal of Composite Materials, 32(2), 141–157.

    Article  Google Scholar 

  • Yeh, H.Y. and Kim, C.H., 1994. The Yeh-Stratton criterion for composite materials, Journal of Composite Materials, 28(10), 926–939.

    Article  Google Scholar 

  • Yu, K., Morozov, E.V., Ashraf, M.A. and Shankar, K., 2017. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications, Journal of Reinforced Plastics and Composites, 36(20), 1514–1530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lou.

Additional information

Foundation item: The study was financially supported by the National Natural Science Foundation of China (Grant No. U2006226] and the National Key Research and Development Program of China (Grant No. 2016YFC0303800).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yy., Lou, M., Wang, Y. et al. Stochastic Failure Analysis of Reinforced Thermoplastic Pipes Under Axial Loading and Internal Pressure. China Ocean Eng 36, 614–628 (2022). https://doi.org/10.1007/s13344-022-0054-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-022-0054-3

Key words

Navigation