Skip to main content
Log in

Propagation and amplitude decay mechanisms of internal solitary waves

  • Technical Notes
  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

In this paper, a modified dynamic coherent eddy model (DCEM) of large eddy simulation is applied to study internal solitary waves in a numerical flume. The model was verified by physical experiment and applied to investigate the potential influence factors on internal wave amplitude. In addition, we discussed the energy loss of internal solitary wave as well as hydrodynamics in the propagation. The results of our study show that (1) Step-depth is the most sensitive factor on wave amplitude for the “step-pool” internal wave generation method and the wave amplitudes obey a linear increase with step depth, and the increase rate is about 0.4. (2) Wave energy loss obeys a linear decrease with the propagation distance and its loss rate of large amplitude waves is smaller than that of small amplitude waves. (3) Loss of kinetic energy in wave valley is larger than that near the interface due to relative high fluctuating frequency. (4) Discovered boundary jet-flow can intensify the bottom shear, which might be one of the mechanisms of substance transportation, and the boundary layers of jet flows are easily influenced by the adjacent waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barad, M. F. and Fringer, O. B., 2010. Simulations of shear instabilities in interfacial gravity waves, J. Fluid Mech., 644, 61–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Cacchione, D. A. and Southard, J. B., 1974. Incipient sediment movement by shoaling internal gravity waves, J. Geophys. Res.-Atmos., 79(15): 2237–2242.

    Article  Google Scholar 

  • Chen, C. Y., Hsu, J. R. C., Cheng, M. H., Chen, H. H. and Kuo, C. F., 2007. An investigation on internal solitary waves in a two-layer fluid: Propagation and reflection from steep slopes, Ocean Eng., 34(1): 171–184.

    Article  Google Scholar 

  • Chen, C. Y., Hsu, J. R. C., Cheng, M. H., Chen, H. H. and Kuo, C. F., 2007. Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes, Ocean Eng., 34(1): 157–170.

    Article  Google Scholar 

  • Cheng, M. H. and Hsu, J. R. C., 2010. Laboratory experiments on depression interfacial solitary waves over a trapezoidal obstacle with horizontal plateau, Ocean Eng., 37(8-9): 800–818.

    Article  Google Scholar 

  • Cui, C., Zhang, N. C., Zuo, S. H. and Fang, Z., 2013. A study on kinematics characteristics of freak wave, China Ocean Eng., 27(3): 391–402.

    Article  Google Scholar 

  • Fringer, O. B. and Street, R. L., 2003. The dynamics of breaking progressive interfacial waves, J. Fluid Mech., 494, 319–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Grue, J., Jensen, P. O., Rusas, P. O. and Sveen, J. K., 1999. Properties of larger-amplitude internal waves, J. Fluid Mech., 380, 257–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Gotoh, T., Fukayama, D. and Nakano, T., 2002. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation, Phys. Fluids, 14(3): 1065–1081.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, H. Q., Imran, J. and Pirmez, C., 2012. The depositional characteristics of turbidity currents in submarine sinuous channels, Mar. Geol., 329-331, 93–102.

    Article  Google Scholar 

  • Huai, W. X., Han, J., Zeng, Y. H., An, X., Qian, Z. D. and Liu, Y. L., 2009. Velocity distribution of flow with submerged flexible vegetations based on mixing-length approach, Applied Mathematics and Mechanics-English Edition, 30(3): 343–351.

    Article  MATH  Google Scholar 

  • Kao, T. W., Pan, F. S. and Renouard, D., 1985. Internal solitions on the pycnocline: Generation, propagation, shoaling and breaking over a slope, J. Fluid Mech., 159, 19–53.

    Google Scholar 

  • Lu, J., Wang, L. L., Tang, H. W. and Ding, Q. L., 2010. Numerical investigation of vertical turbulent jets in different types of jets, China Ocean Eng., 24(4): 611–626.

    Google Scholar 

  • Lin, P. Z. and Li, C. W., 2002. A s-coordinate three-dimensional numerical model for surface wave propagation, Int. J. Numer. Meth. Fl., 38(11): 1045–1068.

    Article  MathSciNet  MATH  Google Scholar 

  • Lilly, D. K., 1992. A proposed modification of the Germano subgrid-scale closure method, Physics of Fluids A Fluid Dynamics, 4(3): 633–635.

    Article  MathSciNet  Google Scholar 

  • Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L. and Vagle, S., 2003. Structure and generation of turbulence at interface strained by internal solitary waves propagating shoreward over the continental shelf, J. Phys. Oceanogr., 33(1): 2093–2112.

    Article  Google Scholar 

  • Maderich, V., Talipova, T., Grimshaw, R.

  • Terletska, K., Brovchenko, I., Pelinovsky, E. and Choi, B. H., 2010. Interaction of a large amplitude interfacial solitary wave of depression with a bottom step, Phys. Fluids, 22, 076602.

    Article  MATH  Google Scholar 

  • Michallet, H. and Ivey, G. N., 1999. Experiments on mixing due to internal solitary waves breaking on uniform slopes, J. Geophys. Res.-Oceans, 104(C6): 13467–13477.

    Article  Google Scholar 

  • Talipova, T., Terletska, K., Maderich, V., Brovchenko, I., Jung, K. T., Pelinovsky, E. and Grimshaw, R., 2013. Internal solitary wave transformation over a bottom step: Loss of energy, Phys. Fluids, 25(3): 184–187.

    Article  Google Scholar 

  • Umeyama, M., 2002. Experimental and theoretical analyses of internal waves of finite amplitude, J. Waterw. Port Coast. Ocean Eng., ASCE, 128(3): 133–141.

    Article  Google Scholar 

  • Wang, C. L., Huang, H. Q., Zhou, Y. P. and Guo, L. N., 2013. Comparative study of three turbulence models in modeling subaqueous gravity flows, Anhui University of Technology (Nature Science), 30(3): 225–233.

    Google Scholar 

  • Wei, G., Du, H., Xu, X. H., Zhang, Y. M., Qu, Z. Y., Hu, T. Q. and You, Y. X., 2014. Experimental investigation of the generation of large-amplitude internal solitary wave and its interaction with a submerged slender body, Science China Physics, Mechanics and Astronomy, 57(2): 301–310.

    Article  Google Scholar 

  • Wessels, F. and Hutter, K., 1996. Interaction of internal waves with a topographic sill in a two-layered fluid, J. Phys. Oceanogr., 26(1): 5–20.

    Article  Google Scholar 

  • Zhu, H., Wang, L. L. and Tang, H. W., 2013. Large-eddy simulation of suspended sediment transport in turbulent channel flow, Journal of Hydrodynamics, Ser. B, 25(1): 48–55.

    Article  Google Scholar 

  • Zhu, H., Wang, L. L. and Tang, H. W., 2014. Large-eddy simulation of the generation and propagation of internal waves, Science China Physics, Mechanics and Astronomy, 57(6): 1128–1136.

    Article  Google Scholar 

  • Zeng, C. and Li, C. W., 2014. Measurements and modeling of open-channel flows with finite semi-rigid vegetation patches, Environ. Fluid Mech., 14(1): 113–134.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-wu Tang  (唐洪武).

Additional information

The project was financially supported by the National Natural Science Foundation of China (Grant No. 51479058), the Special Fund for Public Welfare of Water Resources Ministry (Grant No. 201501007), the State Key Program of National Natural Science of China (Grant No. 51239003) and the 111 Project (Grant No. B12032), the Fundamental Research Funds for the Central Universities (Grant No. 2014B36114) and the Innovation Project of the Scientific Research for College Graduates of Jiangsu Province (Grant No. KYLX_0467).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ll., Wang, Cl., Tang, Hw. et al. Propagation and amplitude decay mechanisms of internal solitary waves. China Ocean Eng 30, 979–991 (2016). https://doi.org/10.1007/s13344-016-0064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-016-0064-0

Keywords

Navigation