Skip to main content

Advertisement

Log in

Decline in the estimated glomerular filtration rate (eGFR) following metabolic control and its relationship with baseline eGFR in type 2 diabetes with microalbuminuria or macroalbuminuria

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2021

This article has been updated

Abstract

Aims

Relationship between baseline eGFR and the rate of decline in eGFR was investigated in diabetic kidney disease.

Materials and methods

Patients with type 2 diabetes with microalbuminuria (MI) (n = 124) or macroalbuminuria (MA) (n = 81) received team-based medical care to prevent the development of diabetic kidney disease. The decline in eGFR over 4 years, divided into the first year and subsequent 3 years, was estimated by linear-mixed modeling.

Results

The eGFR showed a rapid decline during the first year, followed by a slower decline. On multiple regression analysis, the baseline eGFR was positively correlated with HbA1c in MI and negatively correlated with carotid plaque in MI and in MA. Subsequent eGFR decline following 1-year intervention was negatively correlated with the baseline eGFR and HbA1c level at 1 year in MI, whereas it was positively correlated with baseline eGFR and negatively correlated with the amount of proteinuria at 1 year in MA. Even in maintained baseline eGFR(≧ 60 ml/min/1.73 m2) at the first year, when HbA1c ≧ 7.5%, eGFR reduction rate and years to ESKD were much faster and shorter, compared to the group of HbA1c < 7.5% [− 3.44 (SE 1.137) vs. − 1.695 (SE 0.431) ml/min/1.73 m2/year, and 19.4 vs. 35.7 years, respectively]. In MA, lower eGFR (< 60 ml/min/1.73 m2) and higher proteinuria (≧ 2.25 g/gCre) had a much faster eGFR decline and shorter time to ESKD, compared to the group of maintained eGFR and lower proteinuria (< 2.25 g/gCre) [− 5.240 (SE 1.537) vs. − 2.67 (SE 0.997) ml/min/1.73 m2/year, and 4.41 vs. 22.8 years, respectively].

Conclusions

In MI, even in maintained eGFR, the continued increase in eGFR in response to hyperglycemia (HbA1c ≧ 7.5%) led to a faster decline in renal function and in MA, lower eGFR, with an increase in proteinuria, contributed to rapid decline of renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

Abbreviations

DDP:

Diabetes dialysis prevention

ESKD:

End-stage kidney disease

LMM:

Linear mixed model

MI:

Microalbuminuria

MA:

Macroalbuminuria

MBP:

Mean blood pressure

UAC:

Urinary albumine-to-creatinine ratio

UPC:

Urinary protein-to-creatinine excretion rate

References

  1. American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S135–51. https://doi.org/10.2337/dc20-S011 (PMID: 31862754).

    Article  Google Scholar 

  2. Kang YX, Lin XL, Ding Y, Pan XW, He SX, Shan PF. Comment on Warren et al. Diabetes and trajectories of estimated glomerular filtration rate: a prospective cohort analysis of the atherosclerosis risk in communities study. Diabetes Care 2019; 41:1646-1653. Diabetes Care. 2019;42:e51–2. https://doi.org/10.2337/dc18-2288.

    Article  PubMed  Google Scholar 

  3. Hoefield RA, Kalra PA, Baker PG, Sousa I, Diggle PJ, Gibson MJ, O’Donoghue DJ, Middleton RJ, New JP. The use of eGFR and ACR to predict decline in renal function in people with diabetes. Nephrol Dial Transplant. 2011;26:887–92. https://doi.org/10.1093/ndt/gfq526.

    Article  PubMed  Google Scholar 

  4. Warren B, Rebholz CM, Sang Y, Lee AK, Coresh J, Selvin E, Grams ME. Diabetes and trajectories of estimated glomerular filtration rate: a prospective cohort analysis of the atherosclerosis risk in communities study. Diabetes Care. 2018;41:1646–53. https://doi.org/10.2337/dc18-0277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311:89–93. https://doi.org/10.1056/NEJM198407123110204.

    Article  CAS  PubMed  Google Scholar 

  6. Adler AI, Stevens RJ, Manley SE, Bilous RW, Bilous RW, Cull BC, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63:225–32. https://doi.org/10.1046/j.1523-1755.2003.00712.x.

    Article  PubMed  Google Scholar 

  7. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med. 1998;339:1448–56. https://doi.org/10.1056/NEJM199811123392007.

    Article  CAS  PubMed  Google Scholar 

  8. Yamanouchi M, Furuichi K, Hoshino J, Toyama T, Hara A, Shimizu M, Kinowaki K, Fujii T, Ohashi K, Yuzawa Y, Kitamura H, Suzuki Y, Sato H, Uesugi N, Hisano S, Ueda Y, Nishi S, Yokoyama H, Nishino T, Samejima K, Kohagura K, Shibagaki Y, Mise K, Makino H, Matsuo S, Ubara Y, Wada T, Research Group of Diabetic Nephropathy, the Ministry of Health, Labour and Welfare, and the Japan Agency for Medical Research and Development. Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease: a propensity score-matched analysis of a nationwide, biopsy-based cohort study. Diabetes Care. 2019;42:891–902. https://doi.org/10.2337/dc18-1320.

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu M, Furuichi K, Toyama T, Kitajima S, Hara A, Kitagawa K, Iwata Y, Sakai N, Takamura T, Yoshimura M, Yokoyama H, Kaneko S, Wada T, Kanazawa Study Group for Renal Diseases and Hypertension. Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care. 2013;36:3655–62. https://doi.org/10.2337/dc13-0298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yokoyama H, Araki SI, Kawai K, Yamazaki K, Shirabe SI, Sugimoto H, Minami M, Miyazawa I, Maegawa H, JDDM Study Group. The prognosis of patients with type 2 diabetes and nonalbuminuric diabetic kidney disease is not always poor: implication of the effects of coexisting macrovascular complications (JDDM 54). Diabetes Care. 2020;43:1102–10. https://doi.org/10.2337/dc19-2049.

    Article  CAS  PubMed  Google Scholar 

  11. Parving HH, Andersen AR, Smidt UM, Hommel E, Mathiesen ER, Svendsen PA. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J (Clin Res Ed). 1987;294:1443–7. https://doi.org/10.1136/bmj.294.6585.1443.

    Article  CAS  Google Scholar 

  12. Hansen HP, Rossing P, Tarnow L, Nielsen FS, Jensen BR, Parving HH. Increased glomerular filtration rate after withdrawal of long-term antihypertensive treatment in diabetic nephropathy. Kidney Int. 1995;47:1726–31. https://doi.org/10.1038/ki.1995.238.

    Article  CAS  PubMed  Google Scholar 

  13. Beddhu S, Shen J, Cheung AK, Kimmel PL, Chertow GM, Wei G, Boucher RE, Chochol M, Arman F, Campbell RC, Contreras G, Dwyer JP, Freedman BI, Ix JH, Kirchner K, Papademetriou V, Pisoni R, Rocco MV, Whelton PK, Greene T. Implications of early decline in eGFR due to intensive BP control for cardiovascular outcomes in SPRINT. J Am Soc Nephrol. 2019;30:1523–33. https://doi.org/10.1681/ASN.2018121261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vora JP, Dolben J, Williams JD, Peters JR, Owens DR. Impact of initial treatment on renal function in newly-diagnosed type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1993;36:734–40. https://doi.org/10.1007/BF00401144.

    Article  CAS  PubMed  Google Scholar 

  15. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Ganntata A, Carrara F, Cella C, Ferrari S, Stucchi N, Parvanova A, Iliev I, Dodesini AR, Trevisan R, Bossi A, Zaletel J, Remuzzi G. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35:2061–8. https://doi.org/10.2337/dc11-2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators Developing the Japanese Equation for Estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92. https://doi.org/10.1053/j.ajkd.2008.12.034.

    Article  CAS  PubMed  Google Scholar 

  17. Akazawa S, Tojikubo M, Nakano Y, Nakamura S, Kawasaki T, Koga N. Usefulness of sum of the thickness of plaque in the carotid artery for predicting the presence and the extent of the coronary artery disease in patients with type 2 diabetes mellitus without known coronary artery disease. Diabetes Res Clin Pract. 2012;96:111–8. https://doi.org/10.1016/j.diabres.2011.11.019.

    Article  PubMed  Google Scholar 

  18. Akazawa S, Tojikubo M, Nakano Y, Nakamura S, Tamai H, Yonemoto K, Sadasima E, Kawasaki T, Koga N. Usefulness of carotid plaque (sum and maximum of plaque thickness) in combination with intima-media thickness for the detection of coronary artery disease in asymptomatic patients with diabetes. J Diabetes Investig. 2016;7:396–403. https://doi.org/10.1111/jdi.12403.

    Article  PubMed  Google Scholar 

  19. Hemmelgarn BR, Zhang J, Manns BJ, Tonelli M, Larsen E, Ghali WA, Southern DA, McLaughlin K, Mortis G, Culleton BF. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int. 2006;69:2155–61. https://doi.org/10.1038/sj.ki.5000270.

    Article  CAS  PubMed  Google Scholar 

  20. Nosadini R, Velussi M, Brocco E, Bruseghin M, Abaterusso C, Saller A, Dalla Vestra M, Carraro A, Bortoloso E, Sambataro M, Barzon I, Frigato F, Muollo B, Chiesura-Corona M, Pacini G, Baggio B, Piarulli F, Sfriso A, Fioretto P. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes. 2000;49:476–84. https://doi.org/10.2337/diabetes.49.3.476.

    Article  CAS  PubMed  Google Scholar 

  21. Taniwaki H, Nishizawa Y, Kawagishi T, Ishimura E, Emoto M, Okamura T, Okuno Y, Morii H. Decrease in glomerular filtration rate in Japanese patients with type 2 diabetes is linked to atherosclerosis. Diabetes Care. 1998;21:1848–55. https://doi.org/10.2337/diacare.21.11.1848.

    Article  CAS  PubMed  Google Scholar 

  22. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care. 2004;27:195–200. https://doi.org/10.2337/diacare.27.1.195.

    Article  PubMed  Google Scholar 

  23. Christiansen JS, Frandsen M, Parving HH. Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetics. Diabetologia. 1981;21:368–73. https://doi.org/10.1007/BF00252683.

    Article  CAS  PubMed  Google Scholar 

  24. Skøtt P, Vaag A, Hother-Nielsen O, Andersen P, Bruun NE, Giese J, Beck-Nielsen H, Parving HH. Effects of hyperglycaemia on kidney function, atrial natriuretic factor and plasma renin in patients with insulin-dependent diabetes mellitus. Scand J Clin Lab Invest. 1991;51:715–27. https://doi.org/10.3109/00365519109104586.

    Article  PubMed  Google Scholar 

  25. Christensen PK, Lund S, Parving HH. The impact of glycaemic control on autoregulation of glomerular filtration rate in patients with non-insulin dependent diabetes. Scand J Clin Lab Invest. 2001;61:43–50. https://doi.org/10.1080/00365510151067965.

    Article  CAS  PubMed  Google Scholar 

  26. Remuzzi A, Viberti G, Ruggenenti P, Battaglia C, Pagni R, Remuzzi G. Glomerular response to hyperglycemia in human diabetic nephropathy. Am J Physiol. 1990;259:F545-552. https://doi.org/10.1152/ajprenal.1990.259.4.F545.

    Article  CAS  PubMed  Google Scholar 

  27. Yokoyama H, Kanno S, Takahashi S, Yamada D, Itoh H, Saito K, Sone H, Haneda M. Determinants of decline in glomerular filtration rate in nonproteinuric subjects with or without diabetes and hypertension. Clin J Am Soc Nephrol. 2009;4:1432–40. https://doi.org/10.2215/CJN.06511208.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vedel P, Obel J, Nielsen FS, Bang LE, Svendsen TL, Pedersen OB, Parving HH. Glomerular hyperfiltration in microalbuminuric NIDDM patients. Diabetologia. 1996;39:1584–9. https://doi.org/10.1007/s001250050618.

    Article  CAS  PubMed  Google Scholar 

  29. Moriya T, Tsuchiya A, Okizaki S, Hayashi A, Tanaka K, Shichiri M. Glomerular hyperfiltration and increased glomerular filtration surface are associated with renal function decline in normo- and microalbuminuric type 2 diabetes. Kidney Int. 2012;81:486–93. https://doi.org/10.1038/ki.2011.404.

    Article  CAS  PubMed  Google Scholar 

  30. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care. 2016;39(Suppl 2):S165-171. https://doi.org/10.2337/dcS15-3006.

    Article  CAS  PubMed  Google Scholar 

  31. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97. https://doi.org/10.1161/CIRCULATIONAHA.113.005081.

    Article  CAS  PubMed  Google Scholar 

  32. Miller JA. Impact of hyperglycemia on the renin angiotensin system in early human type 1 diabetes mellitus. J Am Soc Nephrol. 1999;10:1778–85.

    Article  CAS  PubMed  Google Scholar 

  33. Cherney DZ, Reich HN, Scholey JW, Daneman D, Mahmud FH, Har RL, Sochett EB. The effect of aliskiren on urinary cytokine/chemokine responses to clamped hyperglycaemia in type 1 diabetes. Diabetologia. 2013;56:2308–17. https://doi.org/10.1007/s00125-013-3000-3.

    Article  CAS  PubMed  Google Scholar 

  34. Chiarelli F, Cipollone F, Romano F, Tumini S, Costantini F, di Ricco L, Pomilio M, Pierdomenico SD, Marini M, Cuccurullo F, Mezzetti A. Increased circulating nitric oxide in young patients with type 1 diabetes and persistent microalbuminuria: relation to glomerular hyperfiltration. Diabetes. 2000;49:1258–63. https://doi.org/10.2337/diabetes.49.7.1258.

    Article  CAS  PubMed  Google Scholar 

  35. Thomaseth K, Pacini G, Morelli P, Tonolo G, Nosadini R. Importance of glycemic control on the course of glomerular filtration rate in type 2 diabetes with hypertension and microalbuminuria under tight blood pressure control. Nutr Metab Cardiovasc Dis. 2008;18:632–8. https://doi.org/10.1016/j.numecd.2007.05.006.

    Article  CAS  PubMed  Google Scholar 

  36. Silveiro SP, Friedman R, de Azevedo MJ, Canani LH, Gross JL. Five-year prospective study of glomerular filtration rate and albumin excretion rate in normofiltering and hyperfiltering normoalbuminuric NIDDM patients. Diabetes Care. 1996;19:171–4. https://doi.org/10.2337/diacare.19.2.171.

    Article  CAS  PubMed  Google Scholar 

  37. Bjornstad P, Cherney DZ, Snell-Bergeon JK, Pyle L, Rewers M, Johnson RJ, Maahs DM. Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with type 1 diabetes. Nephrol Dial Transplant. 2015;30:1706–11. https://doi.org/10.1093/ndt/gfv121.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thomson HJ, Ekinci EI, Radcliffe NJ, Seah JM, MacIsaac RJ, Jerums G, Premaratne E. Elevated baseline glomerular filtration rate (GFR) is independently associated with a more rapid decline in renal function of patients with type 1 diabetes. J Diabetes Complicat. 2016;30:256–61. https://doi.org/10.1016/j.jdiacomp.2015.11.003.

    Article  Google Scholar 

  39. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2005;67:2089–100. https://doi.org/10.1111/j.1523-1755.2005.00365.x.

    Article  PubMed  Google Scholar 

  40. Brocco E, Velussi M, Cernigoi AM, Abaterusso C, Bruseghin M, Carraro A, Sambataro M, Piarulli F, Sfriso A, Nosadini R. Evidence of a threshold value of glycated hemoglobin to improve the course of renal function in type 2 diabetes with typical diabetic glomerulopathy. J Nephrol. 2001;14:461–71.

    CAS  PubMed  Google Scholar 

  41. Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, Joles JA. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–39. https://doi.org/10.1681/ASN.2016060666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Imai E, Horio M, Yamagata K, Iseki K, Hara S, Ura N, Kiyohara Y, Makino H, Hishida A, Matsuo S. Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res. 2008;31:433–41. https://doi.org/10.1291/hypres.31.433.

    Article  PubMed  Google Scholar 

  43. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, King AJ, Klahr S, Massry SG, Seifter JL. Blood pressure control, proteinuria, and the progression of renal disease. The modification of diet in renal disease study. Ann Intern Med. 1995;123:754–62. https://doi.org/10.7326/0003-4819-123-10-199511150-00003.

    Article  CAS  PubMed  Google Scholar 

  44. Ruggenenti P, Gherardi A, Perna G, Benini R, Remuzzi G. Chronic proteinuric nephropathy: outcomes and response to treatment in a prospective cohort of 352 patients with different patterns of renal injury. Am J Kidney Dis. 2000;35:1155–565. https://doi.org/10.1016/s0272-6386(00)70054-0 (PMID: 10845831).

    Article  CAS  PubMed  Google Scholar 

  45. Bruno G, Merletti F, Bargero G, Novelli G, Melis D, Soddu A, Perotto M, Pagano G, Cavallo-Perin P. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato Study. Diabetologia. 2007;50:941–8. https://doi.org/10.1007/s00125-007-0616-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our deep gratitude to Dr Eiji Kawasaki, Dr Yuko Nakano, Dr Yoko Sagara, Dr Aira Uchida, Dr Takahiro Fukuyama, Dr Masayuki Tojikubo, and Dr Hidekazu Tamai who involved in the treatment in prevention of diabetes dialysis at the Diabetes Center of Shin-koga Hospital. We thank Mr. Daiki Setoguchi and Mr. Hiroaki Tagawa for his involvement in data organization.

Author information

Authors and Affiliations

Authors

Contributions

ES performed statistical analysis and wrote the manuscript. YS and NK contributed to the discussion and reviewed and edited the manuscript.

Corresponding author

Correspondence to Shoichi Akazawa.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This study was approved by the Ethical committee at Koseikai Hospital (2020-12, 2020/12/3) and Shin-Koga Hospital (2019/11/13, 2018/11/12).

Informed consent

All informed consent was given before management of Diabetes Dialysis Prevention was initiated. All patients were fully informed about DDP, understood how to do it, and agreed to receive not only treatment by a doctor, but also dietary guidance by a registered dietitian and lifestyle guidance by a nurse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 73 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akazawa, S., Sadashima, E., Sera, Y. et al. Decline in the estimated glomerular filtration rate (eGFR) following metabolic control and its relationship with baseline eGFR in type 2 diabetes with microalbuminuria or macroalbuminuria. Diabetol Int 13, 148–159 (2022). https://doi.org/10.1007/s13340-021-00517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-021-00517-2

Keywords

Navigation