Skip to main content

Advertisement

Log in

Spectrum of diabetic neuropathies

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

The diabetic state results in neuropathy. The main causative mechanism is hyperglycemia, although microvascular involvement, hypertriglyceridemia, as well as genetic and immune mechanisms may be contributory. There is a growing spectrum of types of diabetic neuropathies that differ based on the type of fibers involved (e.g. myelinated, unmyelinated, autonomic, somatic), distribution of nerves involved, and mechanisms of neuropathy. The most common type is distal sensory neuropathy (DSN), which affects the distal ends of large myelinated fibers, more often sensory than motor, and is often asymptomatic. The next-most common is distal small fiber neuropathy (DSFN), which largely affects the unmyelinated fibers and carries the phenotype of burning feet syndrome. Diabetic autonomic neuropathy (DAN) occurs when widespread involvement of autonomic unmyelinated fibers occurs, and patients can be incapacitated with orthostatic hypotension as well as neurogenic bladder and bowel involvement. Radiculoplexus diabetic neuropathy causes proximal weakness and pain, usually in the lower extremity, and has a combination of immune, inflammatory, and vascular mechanisms. The nerve roots and plexus are involved. These patients present with proximal weakness of a subacute onset, often with severe pain and some autonomic failure. Finally, rapid and sustained reduction of blood glucose can result in treatment-induced diabetic neuropathy (TIND), which largely affects the sensory and autonomic fibers. This occurs if HbA1c is rapidly reduced within 3 months, and the likelihood is proportional to the original A1c and the size of the reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sinnreich M, Taylor BV, Dyck PJ. Diabetic neuropathies. Classification, clinical features, and pathophysiological basis. Neurologist. 2005; 11:63–79.

    PubMed  Google Scholar 

  2. Tracy JA, Dyck PJ. The spectrum of diabetic neuropathies. Phys Med Rehabil Clin N Am. 2008;19:1–26.

    PubMed  PubMed Central  Google Scholar 

  3. Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43:817–24.

    CAS  PubMed  Google Scholar 

  4. Dyck PJ, Karnes JL, O’Brien PC, Litchy WJ, Low PA, Melton LJ III. The Rochester Diabetic Neuropathy study: reassessment of tests and criteria for diagnosis and staged severity. Neurology. 1992;42:1164–70.

    CAS  PubMed  Google Scholar 

  5. Dyck PJ, Davies JL, Litchy WJ, O’Brien PC. Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy study cohort. Neurology. 1997;49:229–39.

    CAS  PubMed  Google Scholar 

  6. Dyck PJ, Davies JL, Clark VM, Litchy WJ, Dyck PJ, Klein CJ, et al. Modeling chronic glycemic exposure variables as correlates and predictors of microvascular complications of diabetes. Diabetes Care. 2006;29:2282–8.

    PubMed  Google Scholar 

  7. Low PA, Benrud-Larson LM, Sletten DM, Opfer-Gehrking TL, Weigand SD, O’Brien PC, et al. Autonomic symptoms and diabetic neuropathy: a population-based study. Diabetes Care. 2004;27:2942–7.

    PubMed  Google Scholar 

  8. Dyck PJ, Davies JL, Wilson DM, Service FJ, Melton LJ, 3rd, O’Brien PC. Risk factors for severity of diabetic polyneuropathy: intensive longitudinal assessment of the Rochester Diabetic Neuropathy Study cohort. Diabetes Care. 1999;22:1479–86.

    Google Scholar 

  9. Anonymous. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986.

  10. Grisold A, Callaghan BC, Feldman EL. Mediators of diabetic neuropathy: is hyperglycemia the only culprit? Curr Opin Endocrinol Diabetes Obes. 2017;24:103–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dyck PJ, Carter RE, Litchy WJ. Modeling nerve conduction criteria for diagnosis of diabetic polyneuropathy. Muscle Nerve. 2011;44:340–5.

    PubMed  PubMed Central  Google Scholar 

  12. Andersen H. Motor neuropathy. Handb Clin Neurol. 2014;126:81–95.

    PubMed  Google Scholar 

  13. Low PA, Zimmerman BR, Dyck PJ. Comparison of distal sympathetic with vagal function in diabetic neuropathy. Muscle Nerve. 1986;9:592–6.

    CAS  PubMed  Google Scholar 

  14. Landowski LM, Dyck PJ, Engelstad J, Taylor BV. Axonopathy in peripheral neuropathies: Mechanisms and therapeutic approaches for regeneration. J Chem Neuroanat. 2016;76:19–27.

    CAS  PubMed  Google Scholar 

  15. Mizisin AP. Mechanisms of diabetic neuropathy: Schwann cells. Handb Clin Neurol. 2014;126:401–28.

    PubMed  Google Scholar 

  16. Goncalves NP, Vaegter CB, Andersen H, Ostergaard L, Calcutt NA, Jensen TS. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol. 2017;13:135–47.

    CAS  PubMed  Google Scholar 

  17. Dyck PJ, Karnes JL, O’Brien P, Okazaki H, Lais A, Engelstad J. The spatial distribution of fiber loss in diabetic polyneuropathy suggests ischemia. Ann Neurol. 1986;19:440–9.

    CAS  PubMed  Google Scholar 

  18. Nukada H. Ischemia and diabetic neuropathy. Handb Clin Neurol. 2014;126:469–87.

    PubMed  Google Scholar 

  19. Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans: a review. J Neuropathol Exp Neurol. 1996;55:1181–93.

    CAS  PubMed  Google Scholar 

  20. Zhou J, Zhou S. Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol. 2014;49:536–46.

    CAS  PubMed  Google Scholar 

  21. Gwathmey KG, Burns TM, Collins MP, Dyck PJ. Vasculitic neuropathies. Lancet Neurol. 2014;13:67–82.

    PubMed  Google Scholar 

  22. Giannini C, Dyck PJ. Ultrastructural morphometric abnormalities of sural nerve endoneurial microvessels in diabetes mellitus. Ann Neurol. 1994;36:408–15.

    CAS  PubMed  Google Scholar 

  23. Giannini C, Dyck PJ. Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Ann Neurol. 1995;37:498–504.

    CAS  PubMed  Google Scholar 

  24. Korthals JK, Gieron MA, Dyck PJ. Intima of epineurial arterioles is increased in diabetic polyneuropathy. Neurology. 1988;38:1582–6.

    CAS  PubMed  Google Scholar 

  25. Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131:1912–25.

    PubMed  PubMed Central  Google Scholar 

  26. Low VA, Sandroni P, Fealey RD, Low PA. Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve. 2006;34:57–61.

    PubMed  Google Scholar 

  27. Stewart JD, Low PA, Fealey RD. Distal small fiber neuropathy: results of tests of sweating and autonomic cardiovascular reflexes. Muscle Nerve. 1992;15:661–5.

    CAS  PubMed  Google Scholar 

  28. Holland NR, Crawford TO, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol. 1998;44:47–59.

    CAS  PubMed  Google Scholar 

  29. Herrmann DN, Griffin JW, Hauer P, Cornblath DR, McArthur JC. Epidermal nerve fiber density and sural nerve morphometry in peripheral neuropathies. Neurology. 1999;53:1634–40.

    CAS  PubMed  Google Scholar 

  30. Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 2017;16:934–44.

    PubMed  Google Scholar 

  31. McArthur JC, Stocks EA, Hauer P, Cornblath DR, Griffin JW. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol. 1998;55:1513–20.

    CAS  PubMed  Google Scholar 

  32. Provitera V, Gibbons CH, Wendelschafer-Crabb G, Donadio V, Vitale DF, Stancanelli A, et al. A multi-center, multinational age- and gender-adjusted normative dataset for immunofluorescent intraepidermal nerve fiber density at the distal leg. Eur J Neurol. 2016;23:333–8.

    CAS  PubMed  Google Scholar 

  33. Thaisetthawatkul P, Fernandes Filho JA, Herrmann DN. Contribution of QSART to the diagnosis of small fiber neuropathy. Muscle Nerve. 2013;48:883–8.

    PubMed  Google Scholar 

  34. Thaisetthawatkul P, Fernandes Filho JA, Herrmann DN. Autonomic evaluation is independent of somatic evaluation for small fiber neuropathy. J Neurol Sci. 2014;344:51–4.

    PubMed  Google Scholar 

  35. Singer W, Spies JM, McArthur J, Low J, Griffin JW, Nickander KK, et al. Prospective evaluation of somatic and autonomic small fibers in selected autonomic neuropathies. Neurology. 2004;62:612–8.

    CAS  PubMed  Google Scholar 

  36. Schrezenmaier C, Singer W, Muenter Swift N, Sletten D, Tanabe J, Low PA. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol. 2007;64:381–6.

    PubMed  Google Scholar 

  37. Stevens MJ, Raffel DM, Allman KC, Dayanikli F, Ficaro E, Sandford T, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.

    CAS  PubMed  Google Scholar 

  38. Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism. 1999;48:92–101.

    CAS  PubMed  Google Scholar 

  39. Veglio M, Carpano-Maglioli P, Tonda L, Quadri R, Giannella R, Rosa C, et al. Autonomic neuropathy in non-insulin-dependent diabetic patients: correlation with age, sex, duration and metabolic control of diabetes. Diab Metab. 1990;16:200–6.

    CAS  Google Scholar 

  40. Low PA, Singer W. Management of neurogenic orthostatic hypotension: an update. Lancet Neurol. 2008;7:451–8.

    PubMed  PubMed Central  Google Scholar 

  41. Hilsted J, Parving HH, Christensen NJ, Benn J, Galbo H. Hemodynamics in diabetic orthostatic hypotension. J Clin Invest. 1981;68:1427–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Low PA, Walsh JC, Huang CY, McLeod JG. The sympathetic nervous system in diabetic neuropathy. A clinical and pathological study. Brain. 1975;98:341–56.

    CAS  PubMed  Google Scholar 

  43. Fujimura J, Camilleri M, Low PA, Novak V, Novak P, Opfer-Gehrking TL. Effect of perturbations and a meal on superior mesenteric artery flow in patients with orthostatic hypotension. J Auton Nerv Syst. 1997;67:15–23.

    CAS  PubMed  Google Scholar 

  44. Palma J, Norcliffe LJ, Martinez J, Kaufmann H. Supine plasma NE predicts the pressor response to droxidopa in neurogenic orthostatic hypotension. Neurology. 2018;91:e1539–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Camilleri M, Chedid V, Ford AC, Haruma K, Horowitz M, Jones KL, et al. Gastroparesis. Nat Rev. 2018;4:41–58.

    Google Scholar 

  46. Bharucha AE, Batey-Schaefer B, Cleary PA, Murray JA, Cowie C, Lorenzi G, et al. Delayed gastric emptying is associated with early and long- term hyperglycemia in type 1 diabetes mellitus. Gastroenterology. 2015;149:330–9.

    PubMed  PubMed Central  Google Scholar 

  47. Molnar GD. Observations on the aetiology and therapy of brittle diabetes. Can Med Assoc J. 1964;90:953–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Low PA, Hilz M. Diabetic Autonomic Neuropathy. In: Low PA, Benarroch EE, editors. Clinical Autonomic Neuropathy. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 423–40.

    Google Scholar 

  49. Scarpello JH, Sladen GE. Diabetes and the gut. Gut. 1978;19:1153–62.

    CAS  PubMed  Google Scholar 

  50. Scarpello JH, Greaves M, Sladen GE. Small intestinal transit in diabetics. Br Med J. 1976;2:1225–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Scarpello JH, Hague RV, Cullen DR, Sladen GE. The 14C-glycocholate test in diabetic diarrhoea. Br Med J. 1976;2:673–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Katz LA, Spiro HM. Gastrointestinal manifestations of diabetes. N Engl J Med. 1966;275:1350–61.

    CAS  PubMed  Google Scholar 

  53. Battle WM, Snape WJ Jr, Alavi A, Cohen S, Braunstein S. Colonic dysfunction in diabetes mellitus. Gastroenterology. 1980;79:1217–21.

    CAS  PubMed  Google Scholar 

  54. Fealey RD, Low PA, Thomas JE. Thermoregulatory sweating abnormalities in diabetes mellitus. Mayo Clin Proc. 1989;64:617–28.

    CAS  PubMed  Google Scholar 

  55. Dutsch M, Hilz MJ, Neundorfer B. Diabetic autonomic neuropathy. Fortschr Neurol Psychiatr. 2001;69:423–38.

    CAS  PubMed  Google Scholar 

  56. Watkins PJ. Facial sweating after food: a new sign of diabetic autonomic neuropathy. Br Med J. 1973;1:583–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Frimodt-Moller C. Diabetic cystopathy. A clinical study of the frequency of bladder. Dan Med Bull. 1976;23:267–79.

  58. Frimodt-Moller C. Diabetic cystopathy. A review of the urodynamic and clinical features of neurogenic bladder dysfunction in diabetes mellitus. Dan Med Bull. 1978;25:49–60.

  59. Beylot M, Marion D, Noel G. Ultrasonographic determination of residual urine in diabetic subjects: relationship to neuropathy and urinary tract infection. Diabetes Care. 1982;5:501–5.

    CAS  PubMed  Google Scholar 

  60. Blaivas JG. The neurophysiology of micturition: a clinical study of 550 patients. J Urol. 1982;127:958–63.

    CAS  PubMed  Google Scholar 

  61. Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol. 1994;151:54–61.

    CAS  PubMed  Google Scholar 

  62. Ellenberg M. Impotence in diabetes: the neurologic factor. Ann Intern Med. 1971;75:213–9.

    CAS  PubMed  Google Scholar 

  63. McCulloch DK, Young RJ, Prescott RJ, Campbell IW, Clarke BF. The natural history of impotence in diabetic men. Diabetologia. 1984;26:437–40.

    CAS  PubMed  Google Scholar 

  64. Ellenberg M, Weber H. Retrograde ejaculation in diabetic neuropathy. Ann Intern Med. 1966;65:1237–46.

    CAS  PubMed  Google Scholar 

  65. Saenz de Tejada I, Goldstein I, Azadzoi K, Krane RJ, Cohen RA. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med. 1989;320:1025–30.

    Google Scholar 

  66. Enzlin P, Mathieu C, Van Den Bruel A, Vanderschueren D, Demyttenaere K. Prevalence and predictors of sexual dysfunction in patients with type 1 diabetes. Diabetes Care. 2003;26:409–14.

    PubMed  Google Scholar 

  67. Enzlin P, Mathieu C, Van den Bruel A, Bosteels J, Vanderschueren D, Demyttenaere K. Sexual dysfunction in women with type 1 diabetes: a controlled study. Diabetes Care. 2002;25:672–7.

    PubMed  Google Scholar 

  68. Dutsch M, Marthol H, Michelson G, Neundorfer B, Hilz MJ. Pupillography refines the diagnosis of diabetic autonomic neuropathy. J Neurol Sci. 2004;222:75–81.

    PubMed  Google Scholar 

  69. Martyn CN, Ewing DJ. Pupil cycle time—a simple way of measuring an autonomic reflex. J Neurol Neurosurg Psychiatry. 1986;49:771–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ewing DJ, Boland O, Neilson JM, Cho CG, Clarke BF. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia. 1991;34:182–5.

    CAS  PubMed  Google Scholar 

  71. O’Brien IA, OHare JP, Lewin IG, Corrall RJ. The prevalence of autonomic neuropathy in insulin-dependent diabetes mellitus: a controlled study based on heart rate variability. Q J Med. 1986;61:957–67.

  72. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 2003;26:1895–901.

    PubMed  Google Scholar 

  73. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.

    PubMed  Google Scholar 

  74. Astrup AS, Tarnow L, Rossing P, Hansen BV, Hilsted J, Parving HH. Cardiac autonomic neuropathy predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29:334–9.

    PubMed  Google Scholar 

  75. Jermendy G, Toth L, Voros P, Koltai MZ, Pogatsa G. QT interval in diabetic autonomic neuropathy. Diabet Med. 1990;7:750.

    CAS  PubMed  Google Scholar 

  76. Latov N. Diagnosis of CIDP. Neurology. 2002;59:S2–6.

    PubMed  Google Scholar 

  77. Rajabally YA, Stettner M, Kieseier BC, Hartung HP, Malik RA. CIDP and other inflammatory neuropathies in diabetes—diagnosis and management. Nat Rev Neurol. 2017;13:599–611.

    CAS  PubMed  Google Scholar 

  78. Bril V, Blanchette CM, Noone JM, Runken MC, Gelinas D, Russell JW. The dilemma of diabetes in chronic inflammatory demyelinating polyneuropathy. J Diabetes Complications. 2016;30:1401–7.

    PubMed  PubMed Central  Google Scholar 

  79. Laughlin RS, Dyck PJ, Melton LJr, Leibson C, Ransom J, Dyck PJ. Incidence and prevalence of CIDP and the association of diabetes mellitus. Neurol India. 2009 73:39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Latov N. Diagnosis and treatment of chronic acquired demyelinating polyneuropathies. Nat Rev Neurol. 2014;10:435–46.

    CAS  PubMed  Google Scholar 

  81. Breiner A, Barnett Tapia C, Lovblom LE, Perkins BA, Katzberg HD, Bril V. Randomized, controlled crossover study of IVIg for demyelinating polyneuropathy and diabetes. Neurol Neuroimmunol NeuroInflamm. 2019; 6:e586.

    PubMed  Google Scholar 

  82. Vernino S, Low PA, Fealey RD, Stewart JD, Farrugia G, Lennon VA. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med. 2000;343:847–55.

    CAS  PubMed  Google Scholar 

  83. Garland H. Diabetic amyotrophy. Br Med J. 1955;2:1287–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Barohn RJ, Sahenk Z, Warmolts JR, Mendell JR. The Bruns–Garland syndrome (diabetic amyotrophy) revisited 100 years later. Arch Neurol. 1991;48:1130–5.

    CAS  PubMed  Google Scholar 

  85. Coppack SW, Watkins PJ. The natural history of diabetic femoral neuropathy. Q J Med. 1991;79:307–13.

    CAS  PubMed  Google Scholar 

  86. Suarez GA, Giannini C, Bosch EP, Barohn RJ, Wodak J, Ebeling P, et al. Immune brachial plexus neuropathy: suggestive evidence for an inflammatory-immune pathogenesis. Neurology. 1996;46:559–61.

    CAS  PubMed  Google Scholar 

  87. Massie R, Mauermann ML, Staff NP, Amrami KK, Mandrekar JN, Dyck PJ, et al. Diabetic cervical radiculoplexus neuropathy: a distinct syndrome expanding the spectrum of diabetic radiculoplexus neuropathies. Brain. 2012;135:3074–88.

    PubMed  Google Scholar 

  88. Dyck PJ, Thaisetthawatkul P. Lumbosacral Plexopathy. CONTINUUM: Lifelong Learn Neurol. 2014;20:1343–58.

    PubMed  Google Scholar 

  89. Pasnoor M, Dimachkie MM, Barohn RJ. Diabetic neuropathy part 2: proximal and asymmetric phenotypes. Neurol Clin. 2013;31:447–62.

    PubMed  PubMed Central  Google Scholar 

  90. Pascoe MK, Low PA, Windebank AJ, Litchy WJ. Subacute diabetic proximal neuropathy. Mayo Clin Proc. 1997;72:1123–32.

    CAS  PubMed  Google Scholar 

  91. Subramony SH, Wilbourn AJ. Diabetic proximal neuropathy. Clinical and electromyographic studies. J Neurol Sci. 1982;53:293–304.

    CAS  PubMed  Google Scholar 

  92. Dyck PJ, Windebank AJ. Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies: new insights into pathophysiology and treatment. Muscle Nerve. 2002;25:477–91.

    PubMed  Google Scholar 

  93. Casey EB, Harrison MJ. Diabetic amyotrophy: a follow-up study. Br Med J. 1972;1:656–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ng PS, Dyck PJ, Laughlin RS, Thapa P, Pinto MV, Dyck PJB. Lumbosacral radiculoplexus neuropathy: incidence and the association with diabetes mellitus. Neurology. 2019;92:e1188–94.

    PubMed  PubMed Central  Google Scholar 

  95. Laughlin RS, Dyck PJ. Electrodiagnostic testing in lumbosacral plexopathies. Phys Med Rehabil Clin N Am. 2013;24:93–105.

    PubMed  Google Scholar 

  96. Dyck PJB, Norell JE, Dyck PJ. Methylprednisolone may improve lumbosacral radiculoplexus neuropathy. Can J Neurol Sci. 2001;28:224–7.

    CAS  PubMed  Google Scholar 

  97. Dyck PJ, Norell JE, Dyck PJ. Non-diabetic lumbosacral radiculoplexus neuropathy: natural history, outcome and comparison with the diabetic variety. Brain. 2001;124:1197–207.

    CAS  PubMed  Google Scholar 

  98. Caravati CM. Insulin neuritis. A case report. Va Med Mon. 1933;59:745–6.

    Google Scholar 

  99. Llewelyn JG, Thomas PK, Fonseca V, King RH, Dandona P. Acute painful diabetic neuropathy precipitated by strict glycaemic control. Acta Neuropathol. 1986;72:157–63.

    CAS  PubMed  Google Scholar 

  100. Tesfaye S, Malik R, Harris N, Jakubowski JJ, Mody C, Rennie IG, et al. Arterio-venous shunting and proliferating new vessels in acute painful neuropathy of rapid glycaemic control (insulin neuritis). Diabetologia. 1996;39:329–35.

    CAS  PubMed  Google Scholar 

  101. Gibbons CH, Freeman R. Treatment-induced diabetic neuropathy: a reversible painful autonomic neuropathy. Ann Neurol. 2010;67:534–41.

    PubMed  PubMed Central  Google Scholar 

  102. Gibbons CH, Freeman R. Clinical implications of delayed orthostatic hypotension: a 10-year follow-up study. Neurology. 2015;85:1362–7.

    PubMed  PubMed Central  Google Scholar 

  103. Low PA, Singer W. Treatment-induced neuropathy of diabetes: an energy crisis? Brain. 2015;138:2–3.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NS 32352 Autonomic Disorders Program Project, NS 44233 Pathogenesis and Diagnosis of Multiple System Atrophy, NS 92625 Multiple System Atrophy–Novel Targets in Early Diagnosis, Pathophysiology, and Therapeutic Approach, U54 NS065736 Autonomic Rare Disease Clinical Consortium, K23NS075141 Differential Approach to the Postural Tachycardia Syndrome (Singer), FDA (FD004789), The Cure MSA Foundation, Mayo CTSA (UL1 TR000135), and Mayo Funds. The Autonomic Diseases Consortium is a part of the NIH Rare Diseases Clinical Research Network (RDCRN). Funding and/or programmatic support for this project was provided by U54 NS065736 from the National Institute of Neurological Diseases and Stroke (NINDS) and the NIH Office of Rare Diseases Research (ORDR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip A. Low.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics policy

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, H., Kawamura, N., Dyck, P.J. et al. Spectrum of diabetic neuropathies. Diabetol Int 11, 87–96 (2020). https://doi.org/10.1007/s13340-019-00424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-019-00424-7

Keywords

Navigation