Skip to main content
Log in

Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Blood glucose levels fluctuate considerably in diabetic patients with reduced secretion of endogenous insulin. We previously reported that glucagon is secreted excessively in these patients and that taurine increases glucagon secretion in vitro. Therefore, we hypothesized that glucose tolerance would further deteriorate when taurine was administered to diabetic mice incapable of insulin secretion. We generated four groups of streptozotocin (STZ)-treated C57BL/6J mice (STZ-mice): STZ-mice without taurine treatment (STZ-Con), STZ-mice treated with 0.5% (w/v) taurine (STZ-0.5% Tau), STZ-mice treated with 1% (w/v) taurine (STZ-1% Tau), and STZ-mice treated with 2% (w/v) taurine (STZ-2% Tau). Mice were treated for 4 weeks, and then, we evaluated glucose tolerance, pancreatic β-cell area and α-cell area, pancreatic insulin and glucagon content, and daily blood glucose variability. As a result, following the administration of taurine, glucose tolerance improved, both pancreatic β- and α-cell area increased, and both insulin and glucagon content increased. In the 1% taurine administration group, blood glucose variability decreased. These unexpected results suggest that taurine improves glucose tolerance, in spite of its subsequent increased glucagon production, partly by increasing pancreatic β-cells and insulin production in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Supplement 1):S11–24.

    Article  Google Scholar 

  2. Bessho M, Murase-Mishiba Y, Tsutsumi C, Haseda F, Imagawa A, Terasaki J, Hanafusa T. Glycaemic instability correlates with a hyperglucagonaemic response in patients with type 1 diabetes without residual beta-cell function. Diabetes Res Clin Pract. 2013;102(2):e38–40.

    Article  CAS  Google Scholar 

  3. Zhang Q, Ramracheya R, Lahmann C, Tarasov A, Bengtsson M, Braha O, Braun M, Brereton M, Collins S, Galvanovskis J, Gonzalez A, Groschner LN, Rorsman NJ, Salehi A, Travers ME, Walker JN, Gloyn AL, Gribble F, Johnson PR, Reimann F, Ashcroft FM, Rorsman P. Role of KATP channels in glucose-regulated glucagon secretion and impaired counter regulation in type 2 diabetes. Cell Metab. 2013;18(6):871–82.

    Article  CAS  Google Scholar 

  4. Diao J, Asghar Z, Chan CB, Wheeler MB. Glucose-regulated glucagon secretion requires insulin receptor expression in pancreatic alpha-cells. J Biol Chem. 2005;280(39):33487–96.

    Article  CAS  Google Scholar 

  5. Kawamori D, Kurpad AJ, Hu J, Liew CW, Shih JL, Ford EL, Herrera PL, Polonsky KS, McGuinness OP, Kulkarni RN. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab. 2009;9(4):350–61.

    Article  CAS  Google Scholar 

  6. Bessho M, Murase-Mishiba Y, Imagawa A, Terasaki J, Hanafusa T. Possible contribution of taurine to distorted glucagon secretion in intra-islet insulin deficiency: a metabolome analysis using a novel α-cell model of insulin-deficient diabetes. PLoS One. 2014;9(11):e113254.

    Article  Google Scholar 

  7. Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982;70(3):598–607.

    Article  CAS  Google Scholar 

  8. Gürer H, Ozgünes H, Saygin E, Ercal N. Antioxidant effect of taurine against lead-induced oxidative stress. Arch Environ Contam Toxicol. 2001;41(4):397–402.

    Article  Google Scholar 

  9. Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46(1):7–20.

    Article  CAS  Google Scholar 

  10. Kontny E, Szczepańska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, Maśliński W. The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum. 2000;43(10):2169–77.

    Article  CAS  Google Scholar 

  11. Franconi F, Loizzo A, Ghirlanda G, Seghieri G. Taurine supplementation and diabetes mellitus. Curr Opin Clin Nutr Metab Care. 2006;9(1):32–6.

    Article  CAS  Google Scholar 

  12. Tokunaga H, Yoneda Y, Kuriyama K. Streptozotocin-induced elevation of pancreatic taurine content and suppressive effect of taurine on insulin secretion. Eur J Pharmacol. 1983;87(2–3):237–43.

    Article  CAS  Google Scholar 

  13. Alvarado-Vásquez N, Zamudio P, Cerón E, Vanda B, Zenteno E, Carvajal-Sandoval G. Effect of glycine in streptozotocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003;134(4):521–7.

    Article  Google Scholar 

  14. Tenner TE Jr, Zhang XJ, Lombardini JB. Hypoglycemic effects of taurine in the alloxan-treated rabbit, a model for type 1 diabetes. Adv Exp Med Biol. 2003;526:97–104.

    Article  CAS  Google Scholar 

  15. Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ. Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia. 2004;47(10):1831–7.

    Article  CAS  Google Scholar 

  16. Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J. Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie. 2009;91(2):261–70.

    Article  CAS  Google Scholar 

  17. Chang KJ, Kwon W. Immunohistochemical localization of insulin in pancreatic beta-cells of taurine-supplemented or taurine-depleted diabetic rats. Adv Exp Med Biol. 2000;483:579–87.

    Article  CAS  Google Scholar 

  18. Gavrovskaya LK, Ryzhova OV, Safonova AF, Matveev AK, Sapronov NS. Protective effect of taurine on rats with experimental insulin-dependent diabetes mellitus. Bull Exp Biol Med. 2008;146(2):226–8.

    Article  CAS  Google Scholar 

  19. O’Brien BA, Harmon BV, Cameron DP, Allan DJ. Beta-cell apoptosis is responsible for the development of IDDM in the multiple low-dose streptozotocin model. J Pathol. 1996;178(2):176–81.

    Article  Google Scholar 

  20. Serrrvice FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970;19(9):644–55.

    Article  Google Scholar 

  21. Tokunaga H, Yoneda Y, Kuriyama K. Protective actions of taurine against streptozotocin-induced hyperglycemia. Biochem Pharmacol. 1979;28(18):2807–11.

    Article  CAS  Google Scholar 

  22. Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150(6):1223–34.

    Article  CAS  Google Scholar 

  23. Fernandes A, King LC, Guz Y, Stein R, Wright CV, Teitelman G. Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology. 1997;138(4):1750–62.

    Article  CAS  Google Scholar 

  24. Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology. 2001;142(11):4956–68.

    Article  CAS  Google Scholar 

  25. Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010;464(7292):1149–54.

    Article  CAS  Google Scholar 

  26. Hernández-Benítez R, Ramos-Mandujano G, Pasantes-Morales H. Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells. Stem Cell Res. 2012;9(1):24–34.

    Article  Google Scholar 

  27. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122(Pt 17):3169–79.

    Article  CAS  Google Scholar 

  28. Ramos-Mandujano G, Hernández-Benítez R, Pasantes-Morales H. Multiple mechanisms mediate the taurine-induced proliferation of neural stem/progenitor cells from the subventricular zone of the adult mouse. Stem Cell Res. 2014;12(3):690–702.

    Article  CAS  Google Scholar 

  29. Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. 2012;42(6):2223–32.

    Article  CAS  Google Scholar 

  30. Kim J, Wong PK. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells. 2009;27(8):1987–98.

    Article  CAS  Google Scholar 

  31. Sharma RK, Zhou Q, Netland PA. Effect of oxidative preconditioning on neural progenitor cells. Brain Res. 2008;1243:19–26.

    Article  CAS  Google Scholar 

  32. Trachtman H, Futterweit S, Sturman JA. Cerebral taurine transport is increased during streptozocin-induced diabetes in rats. Diabetes. 1992;41(9):1130–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-aid (25461367) from the Ministry of Science, Education and Culture of Japan (to Y.M–M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Murase-Mishiba.

Ethics declarations

Animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

TH. has received honoraria from Novo Nordisk Pharma for lectures. A.I. has received honoraria from Eli Lilly Japan for lectures. Y.N., Y.M–M., M.B-T., and J.T. declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatsuru, Y., Murase-Mishiba, Y., Bessho-Tachibana, M. et al. Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice. Diabetol Int 9, 234–242 (2018). https://doi.org/10.1007/s13340-018-0353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-018-0353-3

Keywords

Navigation