Skip to main content
Log in

Liraglutide increases 24-h heart rate by reducing the cardiac parasympathetic activity of patients with type 2 diabetes: power spectral analysis of heart rate variability on 24-h Holter ECG recordings

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

The effects of liraglutide, a glucagon-like peptide 1 receptor agonist, on heart rate over a 24-h period (24-h heart rate) and on parasympathetic modulation of heart rate among patients with type 2 diabetes were investigated by 24-h power spectral analysis (PSA) of heart rate variability. Seven consecutive male patients with type 2 diabetes received once-daily subcutaneous injection of liraglutide (0.9 mg). We performed 24-h Holter electrocardiographic recording at baseline and after treatment for 24 weeks. PSA revealed that R–R variability data were distributed in two bands: low-frequency (LF) and high-frequency (HF) power. Compared with baseline, heart rate after treatment for 24 weeks was higher at every hour, with a significant difference for 15 of the 24 h time points. LF power was significantly reduced at two measurement points, and HF power was significantly reduced at four points. In addition, heart rate was significantly increased at all points at which LF or HF power was significantly reduced after treatment with liraglutide for 24 weeks. In conclusion, liraglutide increases 24-h heart rate after treatment for 24 weeks, possibly by inhibiting cardiac parasympathetic (vagal) activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39.

    Article  CAS  PubMed  Google Scholar 

  2. Yamamoto H, Kishi T, Lee CE, Choi BJ, Fang H, et al. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J Neurosci. 2003;23:2939–46.

    CAS  PubMed  Google Scholar 

  3. Barragán JM, Eng J, Rodríguez R, Blázquez E. Neural contribution to the effect of glucagon-like peptide-1-(7-36) amide on arterial blood pressure in rats. Am J Physiol. 1999;277:E784–91.

    PubMed  Google Scholar 

  4. Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002;110:43–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 2010;375:1447–56.

    Article  CAS  PubMed  Google Scholar 

  6. Mundil D, Cameron-Vendrig A, Husain M. GLP-1 receptor agonists: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res. 2012;9:95–108.

    Article  PubMed  Google Scholar 

  7. Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3(1):1–16.

    Article  Google Scholar 

  8. Agersø H, Jensen LB, Elbrønd B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45:195–202.

    Article  PubMed  Google Scholar 

  9. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, Low P, Valensi P. On behalf of the Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27:639–53.

    Article  PubMed  Google Scholar 

  10. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article  PubMed  Google Scholar 

  11. Bernardi L, Spallone V, Stevens M, Hilsted J, Frontoni S, Pop-Busui R, Ziegler D, Kempler P, Freeman R, Low P, Tesfaye S, Valensi P. On behalf of the Toronto Consensus Panel on Diabetic Neuropathy. Investigation methods for cardiac autonomic function in human research studies. Diabetes Metab Res Rev. 2011;27:654–64.

    Article  PubMed  Google Scholar 

  12. Wakabayashi S, Aso Y. Adiponectin concentrations in sera from patients with type 2 diabetes are negatively associated with sympathovagal balance as evaluated by power spectral analysis of heart rate variation. Diabetes Care. 2004;27:2392–7.

    Article  CAS  PubMed  Google Scholar 

  13. Yasuda H, Sanada M, Kitada K, Terashima T, Kim H, Sakaue Y, Fujitani M, Kawai H, Maeda K, Kashiwagi A. Rationale and usefulness of newly devised abbreviated diagnostic criteria and staging for diabetic polyneuropathy. Diabetes Res Clin Pract. 2007;77(Suppl 1):S178–83.

    Article  CAS  PubMed  Google Scholar 

  14. Schönauer M, Thomas A, Morbach S, Niebauer J, Schönauer U, Thiele H. Cardiac autonomic diabetic neuropathy. Diab Vasc Dis Res. 2008;5:336–44.

    Article  PubMed  Google Scholar 

  15. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728–42.

    Article  CAS  PubMed  Google Scholar 

  16. Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH, Zychma M, Blonde L. LEAD-6 Study Group. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374(9683):39–47.

    Article  CAS  PubMed  Google Scholar 

  17. Laude D, Baudrie V, Elghozi JL. Effects of atropine on the time and frequency domain estimates of blood pressure and heart rate variability in mice. Clin Exp Pharmacol Physiol. 2008;35:454–7.

    Article  CAS  PubMed  Google Scholar 

  18. Griffioen KJ, Wan R, Okun E, Wang X, Lovett-Barr MR, et al. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovasc Res. 2011;89:72–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Palatini P, Benetos A, Grassi G, Julius S, Kjeldsen SE, Mancia G, Narkiewicz K, Parati G, Pessina AC, Ruilope LM, Zanchetti A. European Society of Hypertension. Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting. J Hypertens. 2006;24:603–10.

    Article  CAS  PubMed  Google Scholar 

  20. Okerson T, Chilton RJ. The cardiovascular effects of GLP-1 receptor agonists. Cardiovasc Ther. 2012;30:e146–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, Ni Y, Liu D, Zhu Z. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15:737–49.

    Article  CAS  PubMed  Google Scholar 

  22. Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, Mitha IH, Zdravkovic M, Düring M, Matthews DR. LEAD-2 Study Group. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32:84–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19:567–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors do not have any conflicts of interests. The study was not funded by a grant from any company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimasa Aso.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, K., Aso, Y., Komatsu, T. et al. Liraglutide increases 24-h heart rate by reducing the cardiac parasympathetic activity of patients with type 2 diabetes: power spectral analysis of heart rate variability on 24-h Holter ECG recordings . Diabetol Int 6, 26–32 (2015). https://doi.org/10.1007/s13340-014-0170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-014-0170-2

Keywords

Navigation