Skip to main content
Log in

On the injectivity of integral operators related to the Euler–Poisson–Darboux equation and shifted k-plane transforms

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study injectivity of integral operators which map the Cauchy initial data for the Euler–Poisson–Darboux equation to the fixed time measurement of the solution of this equation. These operators generalize the well-known spherical means and are closely related to the shifted k-plane transforms, which assign to functions in \(L^p(\mathbb {R}^n)\) their mean values over all k-planes at a fixed distance from the given k-planes. Several generalizations, including the Radon transform over strips of fixed width in \(\mathbb {R}^2\) and a similar transform over tubes of fixed diameter in \(\mathbb {R}^3\), are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No data, materials, or theories by others are presented as if they were the author’s own.

Code availability

Not applicable.

Notes

  1. Note that \(k< (n-1)/2\) in the last line is equivalent to \(2n/(n-1)<n/k\), where n/k is the upper bound for p.

References

  1. Agranovsky, M.L., Narayanan, E.K.: \(L^p\)-integrability, supports of Fourier transforms and uniqueness for convolution equations. J. Fourier Anal. Appl. 10, 315–324 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresters, D.W.: On the equation of Euler–Poisson–Darboux. SIAM J. Math. Anal. 4, 31–41 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christ, M.: Estimates for the k-plane transform. Indiana Univ. Math. J. 33, 891–910 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Drury, S.W.: A survey of \(k\)-plane transform estimates. Contemp. Math. 91, 43–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdélyi, A. (ed.): Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  6. Helgason, S.: Integral Geometry and Radon Transform. Springer, New York (2011)

    MATH  Google Scholar 

  7. Miyachi, A.: On some estimates for the wave equation in \(L^p\) and \(H^p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 331–354 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Oberlin, D.M., Stein, E.M.: Mapping properties of the Radon transform. Indiana Univ. Math. J. 31, 641–650 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Peral, J.C.: \(L^p\) estimates for the wave equation. J. Funct. Anal. 36, 114–145 (1980)

    Article  MATH  Google Scholar 

  10. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series: Special Function. Gordon and Breach Sci. Publ, New York (1986)

    MATH  Google Scholar 

  11. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig Math. Nat. Kl. 69, 262–277 (1917)

    MATH  Google Scholar 

  12. Rawat, R., Sitaram, A.: The injectivity of the Pompeiu transform and \(L^p\)-analogues of the Wiener–Tauberian theorem. Israel J. Math. 91, 307–316 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rouvière, F.: Inverting Radon transforms: the group-theoretic approach. Enseign. Math. (3-4) 2(47), 205–252 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Rubin, B.S.: Difference regularization of multiplier operators related to the Cauchy problem for the wave equation (in Russian), Dep. VINITI, March 3, No. 1885–B87, p. 47 (1987)

  15. Rubin, B.S.: Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization. Mat. Sb. 180, 1524–1547 (1989). (Translated in Math. USSR-Sb. 68, 391–416 (1991))

    MATH  Google Scholar 

  16. Rubin, B.: Reconstruction of functions from their integrals over \(k\)-planes. Israel J. Math. 141, 93–117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rubin, B.: Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis. Cambridge University Press (2015)

    MATH  Google Scholar 

  18. Rubin, B.: On the injectivity of the shifted Funk-Radon transform and related harmonic analysis. arXiv:2211.10348 [math.FA] (2022)

  19. Samko, S.G.: The spaces \(L^{\alpha }_{p, r}({\mathbb{R} }^n)\) and hypersingular integrals. Stud. Math. 61, 193–230 (1977)

    Google Scholar 

  20. Samko, S.G.: Hypersingular Integrals and Their Applications. Analytical Methods and Special Functions, vol. 5. Taylor & Francis (2002)

    MATH  Google Scholar 

  21. Stein, E.M.: Maximal functions I Spherical means. Proc. Natl. Acad. Sci. U.S.A. (7) 73, 2174–2175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton (1971)

    MATH  Google Scholar 

  23. Strichartz, R.S.: Convolutions with kernels having singularities on a sphere. Trans. Am. Math. Soc. 148, 461–471 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Strichartz, R.S.: \(L^p\)-estimates for Radon transforms in Euclidean and non-Euclidean spaces. Duke Math. J. 48, 699–727 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Strichartz, R.S.: Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87, 51–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thangavelu, S.: Spherical means and CR functions on the Heisenberg group. J. Anal. Math. 63, 255–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Volchkov, V.V.: Integral Geometry and Convolution Equations. Springer (2003)

    Book  MATH  Google Scholar 

  28. Zalcman, L.: Offbeat integral geometry. Am. Math. Mon. 87, 161–175 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referee for thoughtful reading of the manuscript and valuable suggestions.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable. I am a single author.

Corresponding author

Correspondence to Boris Rubin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

I agree to publish this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, B. On the injectivity of integral operators related to the Euler–Poisson–Darboux equation and shifted k-plane transforms. Anal.Math.Phys. 13, 56 (2023). https://doi.org/10.1007/s13324-023-00819-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00819-5

Keywords

Navigation