Skip to main content
Log in

Weak solutions to the complex m-Hessian type equations for arbitrary nonnegative Radon measures on open subsets of \({\mathbb {C}}^n\)

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the paper, we prove the existence of weak solutions of the complex m-Hessian type equation for arbitrary nonnegative Radon measures on an open subset \(\Omega \) of \({\mathbb {C}}^n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Åhag, P., Cegrell, U., Czyż, R., Hiep, P.H.: Monge-Ampère measures on pluripolar sets. J. Mat. Pures Appl. 92, 613–627 (2009). https://doi.org/10.1016/j.matpur.2009.06.001

    Article  MATH  Google Scholar 

  2. Amal, H., Asserda, S., El Gasmi, A.: Weak solutions to the complex Hessian type equations for arbitrary measures. Complex Anal. Op. Theory. 14, 8 (2020). https://doi.org/10.1007/s11785-020-01044-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère operator. Invent. Math. 37, 1–44 (1976). https://doi.org/10.1007/BF01418826

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedford E., Taylor, B.A.: The Dirichlet problem for an equation of complex Monge-Ampère type, In: Partial Differential Equations and Geometry (Park City, UT, 1977), Lecture Notes Pure Appl. Mat. 48, 39–50 (1979) Dekker, New York

  5. Benelkourchi, S., Guedj, V., Zeriahi, A.: Plurisubharmonic functions with weak singularities, Complex analysis and digital geometry proceedings from the Kiselmanfest, 2006. Uppsala Universitet, (2007) ISSN 0502-7454, 57-73

  6. Benelkourchi, S.: Weak solution to the complex Monge-Ampère equation on hyperconvex domains. Ann. Polon. Math. 112(3), 239–246 (2014). https://doi.org/10.4064/ap112-3-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst Fourier (Grenoble) 55, 1735–1756 (2005). https://doi.org/10.5802/aif.2137

    Article  MathSciNet  MATH  Google Scholar 

  8. Błocki, Z.: The domain of definition of the complex Monge-Ampère operator. Am. J. Math. 128(2), 519–530 (2006). https://doi.org/10.1353/ajm.2006.0010

    Article  MATH  Google Scholar 

  9. Cegrell, U.: On the Dirichlet problem for the complex Monge-Ampère operator. Math. Z. 185, 247–251 (1984). https://doi.org/10.1007/BF01181695

    Article  MathSciNet  MATH  Google Scholar 

  10. Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier. 54, 159–179 (2004). https://doi.org/10.5802/aif.2014

    Article  MathSciNet  MATH  Google Scholar 

  11. Cegrell, U.: A general Dirichlet problem for the complex Monge-Ampère operator. Ann. Polon. Math. 94, 131–147 (2008). https://doi.org/10.4064/ap94-2-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Cegrell, U., Kołodziej, S.: The equation of complex Monge-Ampère type and stability of solutions. Mat. Ann. 334, 713–729 (2006). https://doi.org/10.1007/s00208-005-0687-6

    Article  MATH  Google Scholar 

  13. Charabati, M.: The Dirichlet problem for complex Monge-Ampère equations, PhD Thesis defended on 22th April (2016), https://tel.archives-ouvertes.fr/tel-01306036

  14. Chinh, L. H.: Equations Hessiennes complexes, PhD Thesis defended on 30th November (2012), http://thesesups.ups-tlse.fr/1961/

  15. Chinh, L.H.: A variational approach to complex Hessian equation in \({\mathbb{C} }^n\). J. Mat. Anal. Appl. 431, 228–259 (2015). https://doi.org/10.1016/j.jmaa.2015.05.067

    Article  MATH  Google Scholar 

  16. Cuong, N.N.: Subsolution theorem for the complex Hessian equation. Univ. Iag. Acta. Math. Fasc L (2012). https://doi.org/10.4467/20843828AM.12.003.1124

    Article  MATH  Google Scholar 

  17. Czyż, R.: The complex Monge-Ampère operator in the Cegrell classes. Dissertationes. Math. 466, 83 (2009). https://doi.org/10.4064/dm466-0-1

  18. Czyż, R.: On a Monge-Ampère type equation in the Cegrell class \(\cal{E} _{\chi }\). Ann. Polon. Math. 99(1), 89–97 (2010). https://doi.org/10.4064/ap99-1-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Dinew, S., Kołodziej, S.: A priori estimates for the complex Hessian equations. Anal. PDE. 7, 227–244 (2014). https://doi.org/10.2140/apde.2014.7.227

    Article  MathSciNet  MATH  Google Scholar 

  20. El-Gasmi, A.: The Dirichlet problem for the complex Hessian operator in the class \(\cal{N} _m(\Omega, f)\). Math. Scand. 127, 287–316 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hai, L.M., Khue, N.V., Hiep, P.: H, The complex Monge-Ampère operator on bounded domains in \({\mathbb{C} }^n\). Res. Math. 54, 309–328 (2009). https://doi.org/10.1007/s00025-009-0360-6

    Article  MATH  Google Scholar 

  22. Hai, L.M., Hiep, P.H.: Some weighted energy classes of plurisubharmonic functions. Potential Anal. 34(1), 43–56 (2011). https://doi.org/10.1007/s11118-010-9179-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Hai, L.M., Trao, N.V., Hong, N.X.: The complex Monge-Ampère equation in unbounded hyperconvex domains in \({\mathbb{C} }^n\). Complex Var. Elliptic Equ. 59(12), 1758–1774 (2014). https://doi.org/10.1080/17476933.2013.879385

    Article  MathSciNet  MATH  Google Scholar 

  24. Hai, L.M., Hiep, P.H., Hong, N.X., Phu, N.V.: The complex Monge-Ampère type equation in the weighted pluricomplex energy class. Internat. J. Math. 25(5), 17 (2015). https://doi.org/10.1142/S0129167X14500426

    Article  MATH  Google Scholar 

  25. Hai, L.M., Long, T.V., Dung, T.V.: Equations of complex Monge-Ampère type for arbitrary measures and applications. Internat. J. Math. (2016). https://doi.org/10.1142/S0129167X1650035X

    Article  MATH  Google Scholar 

  26. Hai, L.M., Quan, V.V.: Weak solutions to the complex \(m\)-Hessian equation on open subsets of \({\mathbb{C} }^n\). Complex Anal. Op. Theory. 13(8), 4007–4025 (2019). https://doi.org/10.1007/s11785-019-00948-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Hai, L.M., Quan, V.V.: Weak solutions to the complex \(m\)-Hessian type equation on open subsets of \({\mathbb{C} }^n\). Complex Anal. Op. Theory 15(5), 84 (2021). https://doi.org/10.1007/s11785-021-01122-6

    Article  MATH  Google Scholar 

  28. Hung, V.V., Phu, N.V.: Hessian measures on \(m\)-polar sets and applications to the complex Hessian equations. Complex Var. Elliptic Equa. 8, 1135–1164 (2017). https://doi.org/10.1080/17476933.2016.1273907

    Article  MathSciNet  MATH  Google Scholar 

  29. Khue, N.V., Hiep, P.: H, A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications. Trans. Am. Math. Soc. 361, 5539–5554 (2009). https://doi.org/10.1090/S0002-9947-09-04730-8

    Article  MATH  Google Scholar 

  30. Klimek, M.: Pluripotential Theory. Oxford Univ. Press, New York (1991)

    MATH  Google Scholar 

  31. Kołodziej, S.: Weak solutions of equations of complex Monge-Ampère type. Ann. Polon. Math. 73, 59–67 (2000). https://doi.org/10.4064/ap-73-1-59-67

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, S.Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Mat. 8, 87–106 (2004). https://doi.org/10.4310/AJM.2004.v8.n1.a8

    Article  MathSciNet  MATH  Google Scholar 

  33. Quan, V.V., Hai, L.M.: Weak solutions to the complex Monge-Ampère equation on open subsets of \({\mathbb{C} }^n\). Math. Stud. 51(2), 143–151 (2019). https://doi.org/10.15330/ms.51.2.143-151

    Article  MathSciNet  MATH  Google Scholar 

  34. Sadullaev, A.S., Abullaev, B.I.: Potential theory in the class of \(m\)-subharmonic functions. Proc. Steklov. Inst. Mat. 279(1), 155–180 (2012). https://doi.org/10.1134/S0081543812080111

    Article  MathSciNet  MATH  Google Scholar 

  35. Thien, N.V.: Maximal \(m\)-subharmonic functions and the Cegrell class \(\cal{N} _m\). Indag. Math. (N.S) 30(4), 717–739 (2019). https://doi.org/10.1016/j.indag.2019.03.005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for valuable comments and suggestions that led to improvements of the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Mau Hai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, L.M., Van Quan, V. Weak solutions to the complex m-Hessian type equations for arbitrary nonnegative Radon measures on open subsets of \({\mathbb {C}}^n\). Anal.Math.Phys. 12, 144 (2022). https://doi.org/10.1007/s13324-022-00755-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00755-w

Keywords

Mathematics Subject Classification

Navigation