Skip to main content
Log in

Complex-self-adjointness

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop the concept of operators in Hilbert spaces which are similar to their adjoints via antiunitary operators, the latter being not necessarily involutive. We discuss extension theory, refined polar and singular-value decompositions, and antilinear eigenfunction expansions. The study is motivated by physical symmetries in quantum mechanics with non-self-adjoint operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Azizov, T.Y., Iokhvidov, I.S.: Linear operators in spaces with an indefinite metric. John Wiley & Sons, UK (1989)

    MATH  Google Scholar 

  2. Bagarello, F., Gazeau, J.-P., Szafraniec, F. H., Znojil, M.: (Eds.), Non-selfadjoint operators in quantum physics: mathematical aspects, Wiley-Interscience, 432 pages (2015)

  3. Borisov, D., Krejčiřík, D.: \(\cal{PT} \)-symmetric waveguides. Integ. Equ. Oper. Theory 62, 489–515 (2008)

    Article  MATH  Google Scholar 

  4. Câmara, M.C., Kliś-Garlicka, K., Lanucha, B., Ptak, M.: Conjugations in \(l^2\) and their invariants. Anal. Math. Phys. 10, 22 (2020)

    Article  MATH  Google Scholar 

  5. Câmara, M.C., Kliś-Garlicka, K., Ptak, M.: Complex symmetric completions of partial operator matrices. Linear Multilinear Algebra 69, 1446–1467 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edmunds, D.E., Evans, W.D.: Spectral theory and differential operators. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  7. Garcia, S.R., Mashreghi, J., Ross, W.T.: Introduction to model spaces and their operators. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  8. Garcia, S.R., Prodan, E., Putinar, M.: Mathematical and physical aspects of complex symmetric operators. J. Phys. A: Math. Theor. 47, 353001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garcia, S.R., Putinar, M.: Complex symmetric operators and applications. Trans. Amer. Math. Soc. 358, 1285–1315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcia, S.R., Putinar, M.: Complex symmetric operators and applications II. Trans. Amer. Math. Soc. 359, 3913–3931 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glazman, I. M.: Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, (1965)

  12. Kato, T.: Perturbation theory for linear operators. Springer-Verlag, Berlin (1966)

    Book  MATH  Google Scholar 

  13. Ko, E., Lee, J.E.: On complex symmetric Toeplitz operators. J. Math. Anal. Appl. 434, 20–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ko, E., Lee, J.E., Lee, J.: Conjugations and complex symmetric block Toeplitz operators on the weighted Hardy space. Rev. Real Acad. Cienc. Exactas Fis. Nat. A: Mat. 116(1), 1–5 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Kochan, D., Krejčiřík, D., Novák, R., Siegl, P.: The Pauli equation with complex boundary conditions. J. Phys. A: Math. Theor. 45, 444019 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krejčiřík, D., Siegl, P.: Elements of spectral theory without the spectral theorem, In Non-selfadjoint operators in quantum physics: Mathematical aspects (432 pages), F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, and M. Znojil, (Eds.), Wiley-Interscience, (2015)

  17. Krejčiřík, D., Siegl, P., Tater, M., Viola, J.: Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 56, 103513 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Prodan, E., Garcia, S.R., Putinar, M.: Norm estimates of complex symmetric operators applied to quantum systems. J. Phys. A: Math. Gen. 39, 389–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sachs, R.G.: The physics of time reversal. University of Chicago Press, Chicago (1987)

    Google Scholar 

Download references

Acknowledgements

D.K. is grateful to the Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, where the ideas of this paper were discussed, for partially supporting his stays in 2020 and 2021.

Funding

C.C. was partially supported by FCT/Portugal through CAMGSD, IST-ID, projects number UIDB/04459/2020 and UIDP/04459/2020. D.K. was partially supported by the EXPRO Grant No. 20-17749X of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written and reviewed by all the authors.

Corresponding author

Correspondence to David Krejčiřík.

Ethics declarations

Conflict of interests

There are no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Câmara, M.C., Krejčiřík, D. Complex-self-adjointness. Anal.Math.Phys. 13, 6 (2023). https://doi.org/10.1007/s13324-022-00740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00740-3

Mathematics Subject Classification

Navigation