Skip to main content
Log in

Generalized Kantorovich forms of exponential sampling series

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new family of operators by generalizing Kantorovich type of exponential sampling series by replacing integral means over exponentially spaced intervals with its more general analogue, Mellin Gauss Weierstrass singular integrals. Pointwise convergence of the family of operators is presented and a quantitative form of the convergence using a logarithmic modulus of continuity is given. Moreover, considering locally regular functions, an asymptotic formula in the sense of Voronovskaja is obtained. By introducing a new modulus of continuity for functions belonging to logarithmic weighted space of functions, a rate of convergence is obtained. Some examples of kernels satisfying the obtained results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, T., Alagöz, O., Aral, A., Costarelli, D., Turgay, M., Vinti, G.: Convergence of generalized sampling series in weighted spaces. submitted

  2. Acar, T., Kursun, S., Turgay, M.: Multidimensional Kantorovich modifications of exponential sampling series. Quaest. Math. (2022). https://doi.org/10.2989/16073606.2021.1992033

    Article  MATH  Google Scholar 

  3. Angeloni, L., Vinti, G.: A characterization of absolute continuity by means of Mellin integral operators. Z. Anal. Anwend. 34, 343–356 (2015)

    Article  MathSciNet  Google Scholar 

  4. Angeloni, L., Vinti, G.: Convergence in variation and a characterization of the absolute continuity. Integral Transforms Spec. Funct. 26, 829–844 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bertero, M., Pike, E.R.: Exponential sampling method for Laplace and other dilationally invariant transforms I. Singular system analysis. II. Examples in photon correction spectroscopy and Frauenhofer diffraction. Inverse Prob. 7, 1–20 (1991)

    Article  Google Scholar 

  6. Bardaro, C., Bevignani, G., Mantellini, I., Seracini, M.: Bivariate generalized exponential sampling series and applications to seismic waves. Constr. Math. Anal. 2(4), 153–167 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bardaro, C., Faina, L., Mantellini, I.: Quantitative approximation properties for iterates of moment operator. Math. Model. Anal. 20, 261–272 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bardaro, C., Faina, L., Mantellini, I.: A generalization of the exponential sampling series and its approximation properties. Math. Slovaca 67(6), 1481–1496 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bardaro, C., Mantellini, I.: Voronovskaya-type estimates for Mellin convolution operators. Results Math. 50(1–2), 1–16 (2007)

    Article  MathSciNet  Google Scholar 

  10. Bardaro, C., Mantellini, I.: A quantitative Voronovskaya formula for Mellin convolution operators. Mediterr. J. Math. 7(4), 483–501 (2010)

    Article  MathSciNet  Google Scholar 

  11. Bardaro, C., Mantellini, I.: Asymptotic behaviour of Mellin-Fejer convolution operators. East J. Approx. 17(2), 181–201 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Bardaro, C., Mantellini, I.: A note on the Voronovskaja theorem for Mellin-Fejer convolution operators. Appl. Math. Lett. 24, 2064–2067 (2011)

    Article  MathSciNet  Google Scholar 

  13. Bardaro, C., Mantellini, I.: Asymptotic formulae for linear combinations of generalized sampling type operators. Z. Anal. Anwend. 32, 279–298 (2013)

    Article  MathSciNet  Google Scholar 

  14. Bardaro, C., Mantellini, I.: On Mellin convolution operators: a direct approach to the asymptotic formulae. Integral Transforms Spec. Funct. 25, 182–195 (2014)

    Article  MathSciNet  Google Scholar 

  15. Bardaro, C., Mantellini, I.: On a Durrmeyer-type modification of the exponential sampling series. Rend. Circ. Mat. Palermo Ser. 2(70), 1289–1304 (2021)

    Article  MathSciNet  Google Scholar 

  16. Bardaro, C., Mantellini, I., Schmeisser, G.: Exponential sampling series: convergence in Mellin-Lebesgue spaces. Results Math. 74, 119 (2019)

    Article  MathSciNet  Google Scholar 

  17. Butzer, P.L., Jansche, S.: A direct approach to the Mellin transform. J. Fourier Anal. Appl. 3, 325–375 (1997)

    Article  MathSciNet  Google Scholar 

  18. Butzer, P.L., Jansche, S.: The finite Mellin transform, Mellin-Fourier series and the Mellin-Poisson summation formula. Rend. Circ. Mat. Palermo Ser. II 52, 55–81 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Butzer, P.L., Jansche, S.: The exponential sampling theorem of signal analysis. Atti Sem. Mat. Fis. Univ. Modena. 46, 99–122 (1998). special issue dedicated to Prof. Calogero Vinti

  20. Butzer, P.L., Jansche, S.: A self-contained approach to Mellin transform analysis for square integrable functions; applications. Integral Transforms Spec. Funct. 8, 175–198 (1999)

    Article  MathSciNet  Google Scholar 

  21. Butzer, P.L., Jansche, S.: Mellin transform, the Mellin-Poisson summation formula and the exponential sampling theorem. Atti Sem. Mat. Fis. Univ. Modena 46, 99–122 (1998). (a special volume dedicated to Professor Calogero Vinti)

    MathSciNet  MATH  Google Scholar 

  22. Casasent, D. (ed.): Optical Data Processing, pp. 241–282. Springer, Berlin (1978)

  23. Costarelli, D., Vinti, G.: Saturation by the Fourier transform method for the sampling Kantorovich series based on bandlimited kernels, Analysis and Mathematical. Physics 9, 2263–2280 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Costarelli, D., Vinti, G.: Inverse results of approximation and the saturation order for the sampling Kantorovich series. J. Approx. Theory 242, 64–82 (2019)

    Article  MathSciNet  Google Scholar 

  25. Gori, F.: Sampling in optics. In: Marks, R.J., II. (ed.) Advances Topics in Shannon Sampling and Interpolation Theory, pp. 37–83. Springer, New York (1993)

    Chapter  Google Scholar 

  26. Kumar, S.A., Bajpeyi, S.: Direct and inverse results for Kantorovich type exponential sampling series. Results Math. 75, 119 (2020)

    Article  MathSciNet  Google Scholar 

  27. Kursun, S., Turgay, M., Alagöz, O., Acar, T.: Approximation properties of multivariate exponential sampling series. Carpath. Math. Publ. 13(3), 666–675 (2021)

    Article  MathSciNet  Google Scholar 

  28. Mamedov, R. G.: The Mellin Transform and Approximation Theory, (in Russian), “Elm”, Baku, (1991)

  29. Ostrowsky, N., Sornette, D., Parker, P., Pike, E.R.: Exponential sampling method for light scattering polydispersity analysis. Opt. Acta 28, 1059–1070 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Data availability statement

The author confirms that the data supporting the findings of this study are available within the article and/or the DOI-links of the references enlisted below.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aral, A., Acar, T. & Kursun, S. Generalized Kantorovich forms of exponential sampling series. Anal.Math.Phys. 12, 50 (2022). https://doi.org/10.1007/s13324-022-00667-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00667-9

Keywords

Mathematics Subject Classification

Navigation