Skip to main content
Log in

The Cauchy problem for nonlocal abstract Schrödinger equations and applications

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space H and linear operators, which occur in a wide variety of physical systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The journal requires a data availability statement in their manuscripts. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^{s}\). Nonlinear Anal. 14, 807–836 (1990)

    Article  MathSciNet  Google Scholar 

  2. Christ, M., Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  3. Ginibre, J., Velo, G.: Smoothing properties and retarded estimates for some dispersive evolution equations. Commun. Math. Phys. 123, 535–573 (1989)

    Article  Google Scholar 

  4. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  5. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schr ödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

  6. Gurses, M., Pekcan, A.: Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 59, 051501 (2018). https://doi.org/10.1063/1.4997835.

  7. Feng, B.-F., Luo, X.-D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31(12), 1 (2018)

    Article  MathSciNet  Google Scholar 

  8. Okazawa, N., Suzuki, T., Yokota, T.: Energy methods for abstract nonlinear Schrödinger equations. Evol. Equ. Control Theory 1(2), 337–354 (2012)

    Article  MathSciNet  Google Scholar 

  9. Ito, K., Kunisch, K.: Optimal bilinear control of an abstract Schrö dinger equation. SIAM J. Control Optim. 46(1), 274–287 (2007)

    Article  MathSciNet  Google Scholar 

  10. Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr. 186, 5–56 (1997)

    Article  MathSciNet  Google Scholar 

  11. Fattorini, H.O.: Second order linear differential equations in Banach spaces, in North Holland Mathematics Studies, vol. 108. North-Holland, Amsterdam (1985)

    Google Scholar 

  12. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  13. Ashyralyev, A., Aggez, N.: Nonlocal boundary value hyperbolic problems involving Integral conditions. Bound. Value Probl. 2014, 214 (2014)

    Article  MathSciNet  Google Scholar 

  14. Piskarev, S., Shaw, S.-Y.: Multiplicative perturbations of semigroups and applications to step responses and cumulative outputs. J. Funct. Anal. 128, 315–340 (1995)

    Article  MathSciNet  Google Scholar 

  15. Shakhmurov, V.B.: Embedding and separable differential operators in Sobolev–Lions type spaces. Math. Notes 84(6), 906–926 (2008)

    Google Scholar 

  16. Shakhmurov, V.B., Musayev, H.: Separability properties of convolution-differential operator equations in weighted Lp spaces. Appl. Math. 14(2), 1 (2015). https://doi.org/10.1007/s11253-018-1458-3

    Article  Google Scholar 

  17. Shakhmurov, V.B., Shahmurov, R.: The Cauchy problem for Boussinesq equations with general elliptic part, Journal Analysis and Math. Phys. Anal. Math. Phys. 9, 1689–1709 (2019)

    Article  Google Scholar 

  18. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

  19. Girardi, M., Weis, L.: Operator-valued multiplier theorems on Besov spaces. Math. Nachr. 251, 34–51 (2003)

    Article  MathSciNet  Google Scholar 

  20. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  21. Klainerman, S.: Global existence for nonlinear wave equations. Commun. Pure Appl. Math. 33, 43–101 (1980)

    Article  MathSciNet  Google Scholar 

  22. Lions, J., Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math. 19, 5–68 (1964)

    Article  MathSciNet  Google Scholar 

  23. Constantin, A., Molinet, L.: The initial value problem for a generalized Boussinesq equation. Diff. Integral Eqns. 15, 1061–72 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Wang, S., Chen, G.: Small amplitude solutions of the generalized IMBq equation. J. Math. Anal. Appl. 274, 846–866 (2002)

    Article  MathSciNet  Google Scholar 

  25. Coifman, R., Meyer, Y.: Wavelets. Calder EndExpansion on-Zygmund and Multilinear Operators. Cambridge University Press (1997)

  26. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli B. Shakhmurov.

Ethics declarations

Conflict of interest

I declare that I have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhmurov, V.B. The Cauchy problem for nonlocal abstract Schrödinger equations and applications. Anal.Math.Phys. 11, 147 (2021). https://doi.org/10.1007/s13324-021-00574-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00574-5

Keywords

Mathematics Subject Classification

Navigation