Skip to main content
Log in

Brosamler’s formula revisited and extensions

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Brosamler’s formula gives a probabilistic representation of the solution of the Neumann problem for the Laplacian on a smooth bounded domain \(D\subset \mathbb {R}^n\) in terms of the reflecting Brownian motion in D. The original proof, as well as other proofs in the literature (e.g., in the case of Lipschitz domains), are based on potential theory (transition densities of the reflecting Brownian motion). We give new proofs of Brosamler’s formula using (path trajectories of) stochastic processes. More precisely, we use a connection between the Dirichlet and the Neumann boundary problems, and the explicit description of the reflecting Brownian motion and its boundary local time in terms of the free Brownian motion. The results are obtained in the case of the Euclidean unit ball in any dimension and in the case of smooth \(C^{1,\alpha }\) planar simply connected domains, for continuous boundary data, and then extended to the case of bounded measurable data, respectively integrable boundary data. A new Brosamler-type formula in terms of the free Brownian motion is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, R.F., Hsu, E.P.: Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains. Ann. Probab. 19, 486–508 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bass, R.F., Hsu, E.P.: Pathwise uniqueness for reflecting Brownian motion in Euclidean domains. Probab. Theory Relat. Fields 117, 183–200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beznea, L.: The stochastic solution of the Dirichlet problem and controlled convergence. Lect. Notes Semin. Interdiscip. Mat. 10, 115–136 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Beznea, L., Pascu, M.N., Pascu, N.R.: An equivalence between the Dirichlet and the Neumann problem for the Laplace operator. Potential Anal. 44, 655–672 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beznea, L., Pascu, M.N., Pascu, N.R.: Connections between the Dirichlet and the Neumann problem for continuous and integrable boundary data. In: Baudoin, F., Peterson, J. (eds.) Stochastic Analysis and Related Topics. Progr. Probab. vol. 72, pp. 85–97. Birkhäuser/Springer, Berlin (2017)

  6. Brosamler, G.A.: A probabilistic solution of the Neumann problem. Math. Scand. 38, 137–147 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cornea, A.: Résolution du probléme de Dirichlet et comportement des solutions à la frontière à l’aide des fonctions de contrôle. C. R. Acad. Sci. Paris Ser. I Math. 320, 159–164 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Cornea, A.: Applications of controlled convergence in analysis. In: Andreian Cazacu, C., Lehto, O.E., Rassias, T.M. (eds.) Analysis and Topology, pp. 257–275. World Sci. Publishing, Singapore (1998)

  9. Hsu, E.P.: Reflecting Brownian motion, boundary local time and the Neumann problem. Ph.D. thesis, Stanford (1984)

  10. Lions, P.L., Sznitman, A.S.: Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37, 511–537 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pascu, M.N.: Scaling coupling of reflecting Brownian motions and the hot spots problem. Trans. Am. Math. Soc. 354, 4681–4702 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften 299. Springer, Berlin (1992)

    Book  Google Scholar 

  13. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (2005)

  14. Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with boundary conditions. Commun. Pure Appl. Math. 24, 147–225 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The present work was supported for the first author by a grant of Ministry of Research and Innovation, CNCS - UEFISCDI, Project No. PN-III-P4-ID-PCE-2016- 0372, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Beznea.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beznea, L., Pascu, M.N. & Pascu, N.R. Brosamler’s formula revisited and extensions. Anal.Math.Phys. 9, 747–760 (2019). https://doi.org/10.1007/s13324-019-00324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00324-8

Keywords

Mathematics Subject Classification

Navigation