Skip to main content
Log in

Boundary blow-up solutions to a class of degenerate elliptic equations

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a bounded domain in \(\mathbb {R}^N=\mathbb {R}^{N_1} \times \mathbb {R}^{N_2}\) with \(N_1, N_2 \ge 1\), and \(N(s) = N_1 + (1+s)N_2\) be the homogeneous dimension of \(\mathbb {R}^N\) for \(s \ge 0\). In this paper, we prove the existence and uniqueness of boundary blow-up solutions to the following semilinear degenerate elliptic equation

$$\begin{aligned} {\left\{ \begin{array}{ll} G_s u = {|x|^{2s}} u^p_+ \; &{}\text { in } \Omega ,\\ u(z)\rightarrow +\infty \; &{}\text { as } {d}(z) \rightarrow 0, \end{array}\right. } \end{aligned}$$

where \(u_+ = \max \{u,0\}\), \(1<p<{{N(s)+2s} \over {N(s)-2}}\), and d(z) denotes the Grushin distance from z to the boundary of \(\Omega \). Here \(G_s\) is the Grushin operator of the form

$$\begin{aligned} G_s u= \Delta _x u + |x|^{2s}\Delta _y u, \; s\ge 0. \end{aligned}$$

It is worth noticing that our results do not require any assumption on the smoothness of the domain \(\Omega \), and when \(s=0\), we cover the previous results for the Laplace operator \(\Delta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandle, C., Marcus, M.: “Large” solutions of semilinear elliptic equation: existence, uniqueness and asymptotic behaviour. J. Anal. Math. 58, 9–24 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bandle, C., Marcus, M.: Asymptotic behavior of solutions and their derivatives for semilinear elliptic problems with blow-up on the boundary. Ann. Inst. H. Poincaré 12, 155–171 (1995)

    Article  Google Scholar 

  3. Brézis, H., Véron, L.: Removable singularities for some nonlinear elliptic equations. Arch. Ration. Mech. Anal. 75, 1–6 (1980)

    Article  MathSciNet  Google Scholar 

  4. D’Ambrosio, L.: Hardy inequalities related to Grushin type operators. Proc. Am. Math. Soc. 132, 725–734 (2004)

    Article  MathSciNet  Google Scholar 

  5. D’Ambrosio, L., Lucente, S.: Nonlinear Liouville theorems for Grushin and Tricomi operators. J. Differ. Equ. 193, 511–54.1 (2003)

    Article  MathSciNet  Google Scholar 

  6. Dong, H., Kim, S., Safonov, M.V.: On uniqueness of boundary blow-up solutions of a class of nonlinear elliptic equations. Commun. Part. Differ. Equ. 33, 177–188 (2008)

    Article  MathSciNet  Google Scholar 

  7. Franchi, B., Gutirrez, C.E., Wheeden, R.L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators. Commun. Part. Differ. Equ. 19, 523–604 (1994)

    Article  Google Scholar 

  8. Keller, J.B.: On solutions of \(\Delta u = f(u)\). Commun. Pure Appl. Math. 10, 503–510 (1957)

    Article  Google Scholar 

  9. Kim, S.: A note on boundary blow-up problem of \(\Delta u = u^p,\) IMA preprint 1872. https://www.ima.umn.edu/sites/default/files/1872.pdf (2002)

  10. Kogoj, A.E., Lancenolli, E.: On semilinear \(\Delta _\lambda \)-Laplace equation. Nonlinear Anal. 75, 4637–4649 (2012)

    Article  MathSciNet  Google Scholar 

  11. Le, N.Q., Savin, O.: Schauder estimates for degenerate Monge–Ampere equations and smoothness of the eigenfunctions. Invent. Math. 207, 389–423 (2017)

    Article  MathSciNet  Google Scholar 

  12. Marcus, M., Veron, L.: Uniqueness of solutions with blowup at the boundary for a class of nonlinear elliptic equations. C. R. Acad. Sci. Paris Ser. I Math. 317, 559–563 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Marcus, M., Véron, L.: Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. H. Poincaré 14, 237–274 (1997)

    Article  Google Scholar 

  14. Monti, R., Morbidelli, D.: Kelvin transform for Grushin operators and critical semilinear equations. Duke Math. J. 131, 167–202 (2006)

    Article  MathSciNet  Google Scholar 

  15. Monticelli, D.D.: Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators. J. Eur. Math. Soc. 12, 611–654 (2010)

    Article  MathSciNet  Google Scholar 

  16. Osserman, R.: On the inequality \(\Delta u \ge f(u),\) Pacic. J. Math. 7, 1641–1647 (1957)

    MATH  Google Scholar 

  17. Smoller, J.: Shock Waves and Reaction–Diffusion Equations, Grund. Math. Wiss., vol. 258. Springer, Berlin (1994)

    Book  Google Scholar 

  18. Véron, L.: Generalized boundary value problems for nonlinear elliptic equations. In: Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Via del Mar-Valparaiso, 2000), pp. 313–342 (electronic), Electron. J. Differ. Equ., Conf. 6, Southwest Texas State Univ., San Marcos, TX (2001)

  19. Véron, L.: Solutions singulires d’quations elliptiques semilinaires (French). C. R. Acad. Sci. Paris Sr. A-B 288, 867–869 (1979)

    Google Scholar 

  20. Véron, L.: Semilinear elliptic equations with uniform blow-up on the boundary. J. Anal. Math. 59, 231–250 (1992)

    Article  MathSciNet  Google Scholar 

  21. Yang, Q., Su, D., Kong, Y.: Improved Hardy inequalities for Grushin operators. J. Math. Anal. Appl. 424, 321–343 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by NRF Grant No. NRF-20151009350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihoon Lee.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J. Boundary blow-up solutions to a class of degenerate elliptic equations. Anal.Math.Phys. 9, 1347–1361 (2019). https://doi.org/10.1007/s13324-018-0241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0241-9

Keywords

Mathematics Subject Classification

Navigation