Skip to main content
Log in

The adjoint of a composition operator via its action on the Szegő kernel

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The adjoint of the classic composition operator on the Hardy space of the unit disc determined by a holomorphic self map of the unit disc is well known to send the Szegő kernel function associated to a point in the unit disc to the Szegő kernel associated to the image of that point under the self map. The purpose of this paper is to show that a constructive proof that holomorphic functions that extend past the boundary can be well approximated by complex linear combinations of the Szegő kernel function gives an explicit formula for the adjoint of a composition operator that yields a new way of looking at these objects and provides inspiration for new ways of thinking about operators that act on linear spans of the Szegő kernel. Composition operators associated to multivalued self mappings will arise naturally, and out of necessity. A parallel set of ideas will be applied to composition operators on the Bergman space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. J. D’Anal. Math. 30, 39–73 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, S., Bedford, E.: Boundary behavior of proper holomorphic correspondences. Math. Ann. 272, 505–518 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bell, S.: Non-vanishing of the Bergman kernel at boundary points of certain domains in \(\mathbb{C}^n\). Math. Ann. 244, 69–74 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bell, S.: Unique continuation theorems for the \({\bar{\partial }}\)-operator and applications. J. Geom. Anal. 3, 195–224 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bell, S.: The Cauchy Transform, Potential Theory, and Conformal Mapping, 2nd edn. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  6. Bell, S.: Algebraic mappings of circular domains in \(C^n\). In: Proceedings of the Special Year in Several Complex Variables at the Mittag–Leffler Institute, 1987–1988, Mathematical Notes, vol. 38, pp. 126–135. Princeton University Press (1993)

  7. Bell, S.: Complexity of the classical kernel functions of potential theory. Indiana Univ. Math. J. 44, 1337–1369 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bell, S., Gustafsson, B., Sylvan, Z.: Szegő coordinates, quadrature domains, and double quadrature domains. Comput. Methods Funct. Theory 11(1), 25–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bochner, S., Martin, W.: Several Complex Variables. Princeton University Press, Princeton (1948)

    MATH  Google Scholar 

  10. Bourdon, P., Shapiro, J.: Adjoints of rationally induced composition operators. J. Func. Anal. 255, 1995–2012 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  12. Cowen, C., Gallardo, E.: A new class of operators and a description of adjoints of composition operators. J. Func. Anal. 238, 447–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ebenfelt, B., Gustafsson, D., Khavinson, M.Putinar: Quadrature Domains and Their Applications, Operator Theory: Advances and Applications, vol. 156. Birkhäuser, Basel (2005)

    Book  Google Scholar 

  14. Gustafsson, B.: Quadrature domains and the Schottky double. Acta Appl. Math. 1, 209–240 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gustafsson, B.: Applications of half-order differentials on Riemann surfaces to quadrature identities for arc-length. J. D’Anal. Math. 49, 54–89 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hammond, C., Moorhouse, J., Robbins, M.: Adjoints of composition operators with rational symbol. J. Math. Anal. Appl. 341, 626–639 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korenblum, B.: A Beurling-type theorem. Acta Math. 138, 265–293 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rudin, W.: Proper holomorphic mappings between circular domains. Indiana Math. J. 31, 701–720 (1982)

    Article  MATH  Google Scholar 

  20. Shapiro, H.S.: The Schwarz Function and Its Generalization to Higher Dimensions, Univ of Arkansas Lecture Notes in the Mathematical Sciences. Wiley, New York (1992)

    Google Scholar 

  21. Shapiro, H., Ullemar, C.: Conformal mappings satisfying certain extremal properties and associated quadrature identities. Research Report TRITA-MAT-1986-6. Royal Institute of Technology, 40 pp. (1981)

  22. Stein, K.: Topics on holomorphic correspondences. Rocky Mt. J. Math. 2, 443–463 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Straube, E.: Harmonic and analytic functions admitting a distribution boundary value. Ann. Scuola Norm. Sup. Pisa 11(4), 559–591 (1984–1985)

  24. Taylor, B.A., Williams, D.L.: Ideals in rings of analytic functions with smooth boundary values. Canad. J. Math. 22, 1266–1283 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Bell.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Additional information

In honor of Dima’s 60-th!

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, S.R. The adjoint of a composition operator via its action on the Szegő kernel. Anal.Math.Phys. 8, 221–236 (2018). https://doi.org/10.1007/s13324-018-0215-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0215-y

Keywords

Mathematics Subject Classification

Navigation