Skip to main content
Log in

3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

  • 3DR Review
  • Published:
3D Research

Abstract

This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alexa, Marc. (2003). Differential coordinates for local mesh morphing and deformation. The Visual Computer, 19(2–3), 105–114.

    MATH  Google Scholar 

  2. Alexa, M., Cohenor, D., & Levin, D. (2000). As-rigid-as-possible shape interpolation. In SIGGRAPH 2000 Conference Proceedings, pp. 157–164.

  3. Bellil, W., Othmani, M., & Amar, C. B. (2007). Initialization by selection for Multi library Wavelet Neural Network training. In Informatics in Control, Automation and Robotics ICINCO 07 (pp. 30–37). Anger France: INSTICC Press. ISBN: 978-972-8865-86-3

  4. Bellil, W., Amar, C. B., & Alimi, M. A. (2007). Multi Library Wavelet Neural Network for lossless image compression. In International REview on COmputers and Software, Vol. 2, pp. 520–526. ISSN 1828-6003

  5. Blanco, F.R. & Manuel, M. (2008). Instant mesh deformation. In I3D’08 Proceedings of the Symposium on Interactive 3D Graphics and Games, pp. 71–78.

  6. Der, K. G., Sumner, R. W., & Popovic, J. (2006). Inverse kinematics for reduced deformable models. ACM Trans. Graph., 25(3), 1174–1179.

    Article  Google Scholar 

  7. Foucher, C. & Vaucher, G. (2001). Compression dimages et rseaux de neurones, revue Valgo n01-02, pp. 17–19, Ardche.

  8. Gao, Y. Hao, A., Zhao, Q., & Dodgson, N. A. (2009). Skin-detached surface for interactive large mesh editing UCAM-CL-TR-755 ISSN 1476-2986.

  9. Guskov, I., Sweldens, W., & Schroder, P. (1999). Multiresolution signal processing for meshes.In Proc. SIGGRAPH, 99, 325–334.

    Google Scholar 

  10. Hernandez, M. (2014). Gauss-Newton inspired preconditioned optimization in large deformation diffeomorphic metric mapping. Physics in Medicine and Biology, 59(20), 6085.

  11. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., et al. (2006). Subspace gradient domain mesh deformation. ACM Trans. Graph., 25(3), 1126–1134.

    Article  Google Scholar 

  12. Schreiner, J., Asirvatham, A., Praun, E., & Hoppe, H. (2004) Inter-surface mapping. ACM Transactions on Graphics, 23, 870–877.

  13. Kin-Chung, O., Chiew-Lan, T., Ligang, Liu., & Hongbo, F. (2006). Dual Laplacain editing for meshes. IEEE Transactions on Visualization and Computer Graphics, 12(3), 386–395.

  14. Leif, P. (2000). Kobbelt Thilo Bareuther Hans-Peter Seidel. Multiresolution Shape Deformations for Meshes with Dynamic Vertex Connectivity: The Eurographics Association and Blackwell Publishers.

    Google Scholar 

  15. Kent, J., Carlson, W., & Parent, R. (1992). Shape transformation for polyhedral objects. ACM SIGGRAPH Computer Graphics, 26, 47–54.

  16. Lipman, Y., Sorkine, O., Levin, D., & Cohen-Or, D. (2005). Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics, 24, 3.

    Article  Google Scholar 

  17. Lipman, Y., Sorkine, O., Cohen-Or, D. Levin, D., Rossl, C., & Seidel, H. P. (2004). Differential coordinates for interactive mesh editing. In SMI 04 P Proceedings of the Shape Modeling International, pp. 181–190.

  18. Magnenat-Thalmann, N., Laperri’Ere, R., & Thalmann, D. (1988). Jointdependent local deformations for hand animation and object grasping. In Proceedings on Graphics interface, 88, 26–33.

    Google Scholar 

  19. Masuda, H. & Ogawa, K. (2008). Interactive deformation of 3D mesh models. Computer-Aided Design and Applications (2008 CAD Solutions, LLC).

  20. Naziha, D., Akram, E., Wajdi, B., & Chokri, B. (2015). A trust region optimization method for fast 3D spherical configuration in morphing processes. In Advanced Concepts for Intelligent Vision Systems Conference, ACIVS.

  21. Nealen, A., Sorking, O., Alexa, M., & Cohen-Or, D. (2005). A sketch-based interface for detail-preserving mesh editing. In Proceedings of ACM SIGGRAPH2005, pp. 1142–1147. ACM Press.

  22. Noh, J. & Neumann, U. (2001). Expression cloning. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pp. 277–288.

  23. Othmani, M., Bellil, W., Amar, C. B., & Alimi, M. A. (2012). A novel approach for high dimension 3D object representation using Multi-Mother Wavelet Network. International Journal “Multimedia Tools and Applications”, MTAP, 59(1), 7–24

  24. Othmani, M. & Amar, C. B. (2010). A high dimension 3D object representation using Multi-Mother Wavelet Network. In ISIVC2010 IEEE International Symposium on Image/video Communications over fixed and mobile networks, special session “Advanced approach on 3-D computer vision”, Rabat Morroco. DOI:10.1109/ISVC.2010.5656177.

  25. Oussar, Y. (1998). Rseaux dondelettes et rseaux de neurones pour la modlisation statique et dynamique de processus. Thse de doctorat: Universit Pierre et Marie Curie, juillet.

    Google Scholar 

  26. Schaefer, S., McPhail, T., & Warren, J. (2006). Image deformation using moving least squares. In SIGGRAPH 06: ACM SIGGRAPH 2006 Papers (pp. 533–540). New York: ACM Press.

  27. Sederberg , T. W. & Scott, R. P. (1986). Free-form deformation of solid geometric models. In SIGGRAPH 86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques (pp. 151–160). New York: ACM Press.

  28. Sheffer, A. & Kraevoy, V. (2004). Pyramid coordinates for morphing and deformation. In 3D Data Processing, Visualization and Transmission, (3DPVT) 2004, pp. 68–75.

  29. Shi, L., Yu, Y., Bell, N., & Feng, W.-W. (2006). A fast multigrid algorithm for mesh deformation. In ACM Transactions on Graphics (Special Issue of SIGGRAPH 2006).

  30. Sorking, O., Lipman, Y., Cohen-OR, D., Alexa, M., Rossl, C., & Seidel, H.-P. (2004). Laplcian surface editing. In Processings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, ACM Press, pp. 179–188.

    Google Scholar 

  31. Sumner, R. W., Zwicker, M., Gotsman, C., & Popovic, J. (2005). Meshbased inverse kinematics. ACM Trans. Graph., 24(3), 488–495.

    Article  Google Scholar 

  32. Sumner, R. W. & Popovicn, J. (2004). Deformation transfer for triangle meshes. In ACM Transactions on Graphics (TOG) Proceedings of ACM SIGGRAPH, pp. 399–405.

  33. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., & Shum, H.-Y. (2004). Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics (special issue for SIGGRAPH 2004) 23,(3), 641–648.

  34. Zayer, R., Rossl, C., Karni, Z., & Seidel, H.-P. (2005). Harmonic guidance for surface deformation. Computer Graphics Forum (Eurographics 2005), 24,(3), 611–621.

  35. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., et al. (2005). Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics, 24, 3.

    Google Scholar 

  36. Zorin, D., Schroder, P., & Sweldens, W. (1997). Interactive mutiresolution mesh editing. In SIGGRAPH 97 Proceedings, pp. 259–268.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naziha Dhibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhibi, N., Elkefi, A., Bellil, W. et al. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture. 3D Res 7, 31 (2016). https://doi.org/10.1007/s13319-016-0107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-016-0107-6

Keywords

Navigation